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Abstract Automatic detection of surface deformation features from large volumes of Interferometric
Synthetic Aperture Radar (InSAR) data is challenging because the magnitude of InSAR measurement noise
varies substantially in both space and time. In this work, we present a computer vision algorithm based on
Laplacian of Gaussian (LoG) filtering to detect the size and location of unknown surface deformation features.
Because our algorithm targets spatially coherent features, tropospheric noise artifacts with similar spatial
characteristics may also be detected. To quantify the likelihood that a detected feature is a real deformation
signal, we estimate the tropospheric noise spectrum directly from data, and we characterize tropospheric noise
using noise simulations that resemble the actual InSAR observations. We demonstrate our algorithm using
Sentinel‐1 data acquired between 2014 and 2019 over the ∼80,000 km2 oil‐producing Permian Basin in West
Texas—one of the most productive oil fields in the world. We detect clusters of deformation features associated
with oil production, wastewater injection, and fault activity. The number of detected deformation features
increases substantially over the study period, which is consistent with the overall rise in oil production within the
Permian Basin since 2014. Further, we show that our algorithm can detect subtle surface deformation from the
26 March 2020 MW 5.0 earthquake near Mentone, Texas, USA and quantify detection uncertainty. Our method
is robust and flexible and can be integrated into various multi‐temporal InSAR time series techniques for
detecting a broad range of local deformation features.

Plain Language Summary Earth's surface can deform over time due to natural events such as
earthquakes or volcanic eruptions, as well as human activities like oil and gas extraction. These subtle,
centimeter‐level changes can be captured using a satellite radar technique known as Interferometric Synthetic
ApertureRadar (InSAR).However, residual tropospheric noise looks visually similar to real surface deformation,
which may hinder accurate interpretation of InSAR results. To address this challenge, we present here an
unsupervised computer vision algorithm to automatically detect spatially coherent features from an InSAR
surface deformation map. Using the tropospheric noise spectrum derived from real InSAR data, we quantify the
likelihood that a detected feature is a real deformation signal rather than tropospheric noise. We demonstrate our
algorithm using both synthetic data and Sentinel‐1 InSARdata over the PermianBasin inWest Texas. Our results
on cumulative deformation maps show an increased number of surface subsidence and uplift features well above
the noise level, consistent with oil and gas production and wastewater injection activities reported in the area.

1. Introduction
Interferometric Synthetic Aperture Radar (InSAR) has made it possible to monitor surface deformation with 10–
100s m spatial resolution and millimeter‐to‐centimeter accuracy over large geological basins (e.g., Chaussard
et al., 2014; Chen et al., 2014, 2016; Pritchard & Simons, 2004). Since the launch of the Sentinel‐1 mission in
2014, the quantity and quality of open‐access InSAR data have grown enormously. Processing and interpreting
such a large volume of InSAR data can benefit from artificial intelligence and computer vision automatic
detection algorithms for identification of deformation hot spots without extensive manual inspection. However,
this is a difficult algorithm design task because the expected deformation signals and noise artifacts can vary
substantially at different study sites.

Previous studies developed algorithms for detecting deformation signals in pixel‐wise InSAR deformation time
series based on magnitude thresholds. Such thresholds can be set manually (Raspini et al., 2018), derived from
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auxiliary data (e.g., global atmospheric weather models or MODIS water vapor measurements; Barnhart &
Lohman, 2013; Parker et al., 2015), or estimated using simulated noise parameters (Havazli &Wdowinski, 2021).
However, these pixel‐wise approaches typically neglect the spatial correlation of deformation signals and
tropospheric noise, limiting their effectiveness for identifying coherent deformation features. Alternatively,
convolutional neural networks (CNNs) have been applied to individual interferograms (Anantrasirichai
et al., 2018) or InSAR time series (Rouet‐Leduc et al., 2021). However, these deep learning‐based methods
require labeled training data or simulated ground truth, and still face challenges distinguishing deformation from
spatially coherent tropospheric noise (Hanssen, 2001). Therefore, most InSAR processing for deformation
mapping includes a tropospheric noise mitigation stage.

Tropospheric noise, caused by changes in atmospheric pressure, temperature, or water vapor between the two
radar acquisitions, has a spatially random (also called turbulence noise) and a systematic component that is
stratified with topography. The stratified component may be mitigated using external data products, such as
global atmospheric weather models or MODIS water vapor measurements (Cao et al., 2021; Parker et al., 2015)
from measurements of zenith delay made by global navigation satellite systems (GNSS) (Yu et al., 2018). When
the deformation of interest occurs away from large changes in topography and topographically‐correlated
deformation (Yang et al., 2024), or in cases where the turbulence dominates the tropospheric noise, empirical
or statistical models can be used to mitigate the noise. These corrections may include a simple averaging/stacking
(Sandwell & Price, 1998), more comprehensive spatio‐temporal statistical modeling and filtering (Li et al., 2019;
Liu et al., 2024; Y. Wang et al., 2022‐06) or deep learning‐based filtering (Rouet‐Leduc et al., 2021; Zhao
et al., 2021).

Despite advances in mitigation techniques, residual tropospheric noise can still mimic deformation signals,
particularly in low signal‐to‐noise conditions with strong turbulence noise. Thus, quantifying uncertainty asso-
ciated with these residual effects becomes essential for reliable automated deformation detection. Given the
complexity and nonlinearity inherent in the interaction between tropospheric noise mitigation and automated
detection algorithms, a purely analytical approach can be challenging. To address this, we propose a simple, data‐
driven method that employs synthetic sampling inspired by the Bootstrap resampling technique (Efron & Tib-
shirani, 1994; Olsen et al., 2023). We estimate the tropospheric turbulence noise spectrum directly from the
InSAR data (Tymofyeyeva & Fialko, 2015; Zebker et al., 2023), enabling us to generate realistic synthetic noise
samples (Hanssen, 2001). These synthetic samples allow us to robustly estimate the likelihood that detected
features originate from residual tropospheric noise. Our approach incorporates a Laplacian of Gaussian (LoG)
filtering‐based algorithm, inspired by feature detection methods in computer vision, such as the Scale Invariant
Feature Transform (SIFT; Lindeberg, 1998; Lowe, 2004; Witkin, 1987). This method efficiently identifies
spatially coherent deformation features without requiring labeled training data. We demonstrate our algorithm on
a synthetic test and on real Sentinel‐1 ascending and descending scenes acquired over an 80,000 km2 oil‐pro-
ducing region in West Texas. We apply the techniques to both long‐term cumulative deformation mapping and to
a detection of transient subtle surface deformation due to the 26 March 2020 MW 5.0 earthquake near Mentone,
TX. We show that our algorithm is flexible and can be integrated with different time series techniques to detect a
broad range of deformation features above tropospheric noise level.

2. Methods
2.1. Overview

Under the assumption that tropospheric noise is the primary error source, our algorithm is designed to auto-
matically identify spatially coherent deformation features in an InSAR surface deformation map. In cases where
temporal decorrelation noise cannot be ignored, the Persistent Scatterers (PS) technique can be employed to
identify high‐quality radar pixels that suffer from minimal decorrelation artifacts (Ferretti et al., 2000; Hooper
et al., 2004; Huang & Zebker, 2022; Shanker & Zebker, 2007; Wang &Chen, 2022). An interpolation between PS
pixels can then be performed to reconstruct spatially coherent phase measurements (J. Chen et al., 2015) before
applying the algorithm described in this paper.

As shown in Figure 1, the overall algorithmworkflow can be divided into two stages. The inputs to both stages are
the same set of unwrapped interferograms. During the first stage, a surface deformation map is derived from
unwrapped interferograms using an existing InSAR processing algorithm (e.g., stacking (Sandwell & Price, 1998)
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or the Small Baseline Subset algorithm as described in Berardino et al. (2002)). An automatic feature detection
algorithm based on LoG filtering (Section 2.2) is then applied to identify spatially coherent features in the
deformation map. To determine whether a detected feature is likely associated with a real deformation signal or
tropospheric noise artifacts, the second stage focuses on the estimation of tropospheric noise characteristics of the
InSAR data set. Here, common reference stacking (Tymofyeyeva & Fialko, 2015; Zebker et al., 2023) is
employed to estimate tropospheric noise at each SAR acquisition time, from which the average tropospheric noise
Power Spectral Density (PSD) is computed (Section 2.3). Synthetic surface deformation maps are then generated
from simulated interferograms that (a) follow the tropospheric noise spectrum derived from real data, and (b)
contain no deformation signals. The same feature‐detection algorithm is applied to the synthetic noise‐only
surface deformation maps, and the characteristics of the detected noise features are recorded (Section 2.4).
Finally, the statistics of detections from synthetic noise‐only interferograms are used to determine which
candidate features detected from the real deformation map are likely associated with real deformation signals.

2.2. Automatic Feature Detection

Given a raster surface deformation mapM derived from InSAR phase observations, the valueMij at the ith row and
jth column represents the magnitude of a cumulative, seasonal, or transient deformation signal at this pixel. Over
natural terrain, the deformation signal of interest is often caused by geophysical processes, including but not
limited to near‐surface coastal processes, confined aquifer pumping and recharge, volcanism, and fault activities.
Because the Earth's crust can be considered as a stratified elastic‐viscoelastic medium, such surface displacements
are typically spatially coherent (Segall, 2010). As a result, many commonly used InSAR phase unwrapping
methods (e.g., Chen & Zebker, 2001) or time series analysis techniques employ similar assumptions that
deformation signals vary slowly in space in order to separate them from decorrelation noise that is random in
space (Zebker & Villasenor, 1992). In this study, our goal is to automatically detect such spatially coherent local
deformation features in an InSAR deformation map M.

Computer vision algorithms have been developed to automatically detect features in 2D image data. One of the
earliest successful algorithms demonstrated that filtering an image using a series of LoG filters could effectively
detect spatially coherent features at multiple scales (Lindeberg, 1993). Although these methods are commonly
referred to as blob detection algorithms by computer scientists, they can detect spatially coherent features of
various shapes, not limited to blobs. Subsequent research focused on improving the computational efficiency of
these algorithms for real‐time computer vision applications. These improved filters often employ approximations
of the LoG filter, such as the Difference of Gaussian (DoG) used in Lowe (2004), or filters more sensitive to
corners and edges (e.g., the Determinant of Hessian (DoH) filter as described in the Scale‐Invariant Feature
Transform algorithm (Lindeberg, 1998). While the goal of many computer vision applications is to detect
different types of stable image features, our objective is to detect only spatially coherent surface deformation
features. Furthermore, the computational time required for feature detection is not a limiting factor, which
constitutes a small fraction of the time required for interferogram formation and analysis. Therefore, we choose
the LoG filter rather than its more computationally‐efficient less‐accurate approximations in the algorithm design.

An LoG kernel K(m) with a size σm is written as:

K(m)ij = (
(i − l)2 + ( j − l)2 − 2σ2m

2πσ4m
) e

−
(i− l)2+( j− l)2

2σ2m (1)

Figure 1. Overview of the algorithm workflow.
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where pixel indices ij ∈ {0,1,… ,2l}. The unit of σm is given in pixels, which can be scaled to meters based on the
pixel spacing of the InSAR deformation map M.

We generate a set of LoG kernels K(1),K(2),… with progressively larger σm (Figure S1 in Supporting Infor-
mation S1), and calculate the mth filter response L(m) as:

L(m) = M ∗K(m) (2)

Here ∗ denotes the 2D discrete convolution, which is typically computed using the Fast Fourier Transform (FFT)
algorithm because of its superior computational efficiency (Szeliski, 2022).

To demonstrate how to estimate the size of a spatially coherent feature from the filter responses, Figure 2a shows a
500 × 500 synthetic deformation map M that contains one Gaussian‐shaped uplift feature in the upper left and
one elliptical Gaussian subsidence feature in the lower right. We filtered this deformation map using 20 LoG
kernels of sizes ranging from σ1 = 3 pixels to σ20 = 100 pixels with a base‐2 logarithmic spacing, and the filter
responses are shown in Figures 2b–2e. For the round uplift case, the filter response L(m) (the black curve in
Figure 2b) is strongest when the kernel size σm matches the deformation feature radius r as r =

̅̅̅
2

√
σm. This is

known as the extreme point, or the local maximum points of |L(m)| for all attempted σm. For the elliptical sub-
sidence case, the extreme point is reached when the average length of the two primary axes of the deformation
feature is ∼

̅̅̅
2

√
σm (the green curve in Figure 2b). For the case of no deformation, no substantial filter response is

generated for any filter size (the gold curve in Figure 2b).

In the case that two candidate features have substantial overlapping areas, the feature with smaller size may be
discarded to suppress redundant detections (Figures 3a–3b). This is an optional user‐defined step, given that the

Figure 2. (a) A synthetic deformation map that contains one Gaussian‐shaped uplift feature in the upper left and one elliptical Gaussian subsidence feature in the lower
right. (b) Laplacian of Gaussian (LoG) response amplitudes for 20 filters with various sizes (σm) at three marker points. The marker locations are shown in panel (a).
(c–e) The LoG filter responses for σm = 12, 50, and 84.
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definition of redundant detections varies based on the objective of each InSAR deformation mapping application.
e.g., this removal step may be configured to only remove features with a large overlap (e.g., >80%) and within a
certain size range (deformation features with very different sizes are likely associated with different sources) to
avoid removing nested deformation features (e.g., a small uplift feature located within broad regional subsidence
patterns). Additionally, the LoG filter may falsely flag ghost features at the edges of a real deformation feature
(Figure 3c). This is because deformation features with strong curvature at the center also contain a strong
opposite‐signed curvature near the border (Lindeberg, 1998). To remove those false positive ghost detections, we
use the distance from the candidate feature's center to the deformation amplitude extremum as a measure. If the
extreme amplitude is located near the edge of a feature, the detection is likely a false‐positive feature. In our test
case, we discarded features with local extremum distances larger than 75% of the feature radius, which effectively
removed all false positives near the edge of real deformation features based on visual inspection in all Sentinel‐1
test cases.

For the kth detected feature, our algorithm outputs the feature center location ( ik, jk), the feature size rk, the filter
response magnitude |gk| at the extreme point, and the feature magnitude |dk| defined as the weighted maximum
magnitude of all pixels within the kth feature:

|dk| = maxkk|wkkMkk| (3)

Figure 3. (a) An example synthetic deformation map. Four uplift features are also detected as one merged, larger feature.
(b) The detection result after removing overlapping features (an optional step). (c) An example of false positive ghost
features (red circles) detected at the edge of an uplift feature (the green circle). For the red ghost features (detected as
“subsidence” features relative to the center uplift), the extreme amplitude values are located near the feature edge. For the
green real uplift feature, the extreme amplitude values are located near the center. We use the distance from the center of the
detection to the local extreme amplitude within the circle to identify and remove ghost features.
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Here the weight wkk equals exp[− (rkk/ rk)2], where rkk is the distance between a pixel within the feature and the
feature center. Because of the exponential weighting, the feature magnitude |dk| is mostly determined by the
observed magnitudes near the center of a feature. We can exclude undesired detections below the noise level by
setting thresholds on the filter response magnitude |gk|, the feature magnitude |dk|, and feature size rk. How to
determine the noise level of an InSAR deformation map is the focus of the remaining method sections.

2.3. Tropospheric Noise Spectrum

InSARmeasurement noise can also produce spatially coherent features that are detectable by our feature detection
algorithm. Here we focus on characterizing the tropospheric turbulence noise in each SAR scene. This is because
tropospheric turbulent noise (a) is correlated in space (Emardson et al., 2003; Lohman & Simons, 2005); (b) is
present in all InSAR data sets with greatly varying magnitudes (Barnhart & Lohman, 2013; Hooper et al., 2012);
and (c) is often the primary noise source that limits InSAR measurement accuracy (Bekaert et al., 2015; Jolivet
et al., 2014; Parker et al., 2015).

Consider an interferogram formed using two SAR scenes acquired at times t1 and t2. In the case that tropospheric
turbulence noise is the dominant noise term, the measured interferometric phase ϕ1,2 (in radians) at a pixel of
interest can be written as (Zebker et al., 1997):

ϕ1,2 ≈
4π
λ
(α2 − α1 + Δd1,2) (4)

where λ is the radar wavelength, α1 and α2 represent the tropospheric delay at the two SAR acquisition times t1
and t2, and Δd1,2 is the Line‐Of‐Sight (LOS) deformation (d2 − d1) between t1 and t2. The unit of λ, α1, α2, and
Δd1,2 is in centimeters. Here all the terms are relative measurements with respect to a local reference pixel rather
than to an absolute geodetic reference frame.

Given N SAR acquisitions, we can estimate the tropospheric noise on the nth SAR acquisition date by averaging
N − 1 unwrapped interferograms that share the common reference SAR scene n as (Tymofyeyeva &
Fialko, 2015; Zebker et al., 2023):

ᾱn =
λ
4π

1
N − 1

( ∑

N

k=1,k≠n
ϕk,n) = αn +

1
N − 1

( ∑

N

k=1,k≠n
Δdk,n − ∑

N

k=1,k≠n
αk) (5)

Because tropospheric turbulence noise can be considered as random in time with zero mean, the term
1

N − 1∑ αk → 0 when N is sufficiently large (Emardson et al., 2003; Onn, 2006). Under the assumption that
1

N − 1∑Δdk,n is relatively small compared to αn, we compute ᾱn at each pixel to obtain a tropospheric turbulence
noise map A(n) for the nth SAR acquisition date over the entire study area. This assumption is reasonable for our
algorithm design, because the goal of the algorithm is to enable accurate interpretation of InSAR results when
surface deformation signals are relatively small compared to the tropospheric noise level in individual in-
terferograms. In the case that a large deformation signal well above the noise level is present, Zebker et al. (2023)
discussed methods that can better separate deformation signals and tropospheric noise, which is beyond the scope
of this paper.

We next compute the 2D Power Spectral Density (PSD) of the nth tropospheric noise estimates at wavenumber
kx,ky (with units 1/m) as (Jacobs et al., 2017):

PSDn (kx,ky) =
|
̂A(n) |2

NxNy (
1

ΔxΔy)
(6)

where ̂A(n) is the Discrete Fourier transform (DFT) of the nth tropospheric noise map A(n), Δx and Δy are the
interferogram pixel spacings (in meters) in the x and y directions, Nx and Ny are the total number of pixels in the x
and y directions, and the squared absolute value and division are pixel‐wise operations.
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As an example, Figure 4a shows a synthetic 2D tropospheric turbulence noise map. We calculate the 2D PSD of
the noise map following Equation 6 (Figure 4b). Under the assumption that tropospheric noise is isotropic, we

average all pixels with a distance k =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2x + k2y
√

from the origin to generate a 1D PSD as a function of k

(Hanssen, 2001). We plot the 1D PSD on a log‐log scale, which rolls off following a power law at higher

Figure 4. (a) A simulated 2D turbulent atmospheric noise map with 500 × 500 pixels at 100 m pixel spacing. (b) 2D Power

Spectral Density (PSD) of the tropospheric noise map in panel (a). (c) 1D PSD as a function of wavenumber k =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2x + k2y
√

,
under the assumption that tropospheric noise is isotropic. (d) A simulated 2D white noise map (spatially uncorrelated) with the
same dimension and pixel spacing as panel (a, e) 2D PSD of the white noise map in panel (d). (f) 1D PSD as a function of

wavenumber k =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2x + k2y
√

. Here we averaged the 1D PSD of 50 2D white noise instances to improve the statistical stability
of the spectral estimates.
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frequencies (Figure 4c). By contrast, the power spectrum of spatially uncorrelated noise is relatively flat across all
frequencies k (Figures 4d–4f).

2.4. Classification of Deformation and Noise Features

Based on the average 1D PSD of N InSAR‐observed tropospheric turbulence noise maps, we can simulate N 2D
noise instances S(1),… ,S(N) that closely resemble the real tropospheric noise over the study area (Hanssen, 2001).
Using these simulated tropospheric noise maps, we form up to N(N − 1)/2 noise‐only interferograms. We then
use these synthetic interferograms as input to derive a synthetic surface deformation map following the same
processing strategy for analyzing real InSAR observations. Because deformation signals are not present in the
synthetic InSAR data set, all spatially coherent features detected in the synthetic surface deformation map are
associated with the residual tropospheric noise. We record the radius rk, the filter response magnitude |gk|, and the
magnitude |dk| of each noise feature using our automatic feature detection algorithm.

We generate many synthetic signal‐free surface deformation maps through repeated noise‐only interferogram
simulations, record the characteristics of all detected noise features, and create 2D histograms of the noise at-
tributes (filter response magnitude vs. radius and feature magnitude vs. radius). These 2D histograms of the noise
attributes are used to determine which candidate features detected in the real deformation map are likely due to
tropospheric noise artifacts.

3. Test Sites and Case Study Descriptions
3.1. Synthetic Test Case

We first demonstrate our workflow on a synthetic test case. We used a PSD with a − 8/3 power law slope to
simulate 10 synthetic tropospheric turbulence noise images of size 800 × 800 and 100 m pixel spacing. From
these 10 noise images, we formed 5 independent noise‐only interferograms. We then averaged these 5 inde-
pendent noise‐only interferograms (known as stacking), and ran the feature detection algorithm on the result. We
recorded the size, location, and magnitude of all detected features. We repeated this simulation process 500 times
to estimate the turbulence noise probability density as a function of feature size (km) and feature magnitude (cm).
To simulate a synthetic noisy deformation map, we added 10 deformation bowls, ranging from 0.5 to 3.5 cm in
amplitude, to the average of five independent noise‐only interferograms. We ran our feature detection algorithm
on the noisy deformation map and recorded the size, the filter response magnitude, and the magnitude of each
candidate feature. Finally, we quantified the uncertainty of these detections using the previously‐computed 2D
turbulence noise probability density function.

3.2. West Texas: Long‐Term Cumulative Deformation

We further demonstrate the algorithm on a study site over an 80,000 km2 oil‐producing region in the Permian
Basin, West Texas (Figure 5). We processed 84 ascending Sentinel‐1 scenes (Path 78, Frames 94–104) acquired
between November 2014 and January 2019 using a geocoded single look complex (SLC) processor
(Zebker, 2017; Zheng & Zebker, 2017). We imposed no maximum spatial baseline and a maximum temporal
baseline of 800 days for interferogram selection, resulting in 2,550 multi‐looked interferograms with 120 m pixel
spacing. We successfully unwrapped all interferograms using the Statistical‐cost, Network‐flow Algorithm for
Phase Unwrapping (SNAPHU) algorithm (Chen & Zebker, 2001) due to the lack of vegetation and decorrelation
artifacts. Because InSAR measures relative LOS deformation with respect to a reference point, we used the GPS
station TXKM (Figure 5, yellow dot), with minimal surface deformation as the reference to calibrate InSAR
results.

We employed a stacking approach to solve for surface deformation maps from Sentinel‐1 interferograms
(Sandwell & Price, 1998; Staniewicz et al., 2020). At a radar pixel of interest, we calculated the average LOS
velocity vavg over a time period of interest T as:

vavg =
∑i∈GΔdi
∑i∈Gti

(7)
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where G is a subset of interferograms formed using two SAR scenes acquired within the time period T. The LOS
measurement (in cm) and the temporal baseline of the ith interferogram inG are written as Δdi and ti respectively.
The total cumulative LOS deformation can be approximated as the average LOS velocity vavg times the total time
period T. In this study, we focused on the LOS cumulative deformation over three periods of interest: November
2014 to January 2017 (29 SAR acquisitions that span ∼2 years), November 2014 to January 2018 (52 SAR
acquisitions that span ∼3 years), and November 2014 to January 2019 (84 SAR acquisitions that span ∼4 years).
As the number of SAR acquisitions increases, the residual tropospheric noise level decreases in the final surface
deformation solutions. We note that the West Texas cumulative LOS deformation maps were validated using
independent GPS observations with ∼2 mm/year accuracy in our earlier study (Staniewicz et al., 2020). Here we
used these three LOS maps as input to the automatic feature detection algorithm as described in Section 2.2.
Alternatively, other InSAR processing algorithms (e.g., the Small Baseline Subset method or SBAS [Berardino
et al., 2002]) may be employed to derive surface deformation maps as the algorithm input as well.

In the West Texas case, the dominant noise term is the tropospheric turbulence noise (Staniewicz et al., 2020). To
determine the noise detection thresholds, we estimated the tropospheric turbulence noise for each SAR acqui-
sition date using all interferograms that contain this SAR scene, known as common reference stacking (Tymo-
fyeyeva & Fialko, 2015). We then removed a long‐wavelength quadratic ramp in each noise map to focus on local
deformation features, and calculated the average tropospheric noise spectrum (Section 2.3). We next generated a
synthetic surface deformation map from simulated signal‐free interferograms that follow the tropospheric noise
spectrum derived from the real interferograms (Section 2.4). For the 2‐year cumulative LOS deformation case
(November 2014 to January 2017), we formed synthetic interferograms using 29 tropospheric noise instances
randomly generated from the average 1D PSD. We ran our feature detection algorithm on the synthetic 2‐year
noise‐only cumulative deformation map, and recorded the size, the filter response magnitude, and the magni-
tude of each detected noise feature. We repeated these simulations until the number of recorded noise features
exceeded 100,000. We smoothed the resulting histograms using a kernel density estimate (KDE) (Scott, 2015),
and generated 2D empirical PDFs of the residual tropospheric noise attributes. Based on these noise distributions,
we removed features detected from the real 2‐year cumulative deformation maps with more than 5% chance of
being tropospheric noise. Similarly, we detected deformation features that are unlikely associated with tropo-
spheric noise from the 3‐year (52 Sentinel‐1 acquisitions) and 4‐year (84 Sentinel‐1 acquisitions) cumulative LOS
deformation maps.

Figure 5. GPS and InSAR data coverage over the Permian Basin. Teal and red boxes indicate Sentinel‐1 InSAR coverage for
ascending Path 78 and descending Path 85. GPS station TXKM (yellow dot) was used as the reference point for both paths.
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As a comparison, we also processed 81 descending Sentinel‐1 scenes (Path 85 Frames 483–493) acquired be-
tween November 2014 and January 2019 (Figure 5). The same GPS station, TXKM, was used as the reference
location to calibrate all interferograms. Following the same processing strategy, we estimated three cumulative
deformation maps spanning November 2014 to January 2017 January 2018, and January 2019. We characterized
the tropospheric noise from InSAR data, and identified deformation features in the cumulative deformation maps
that are likely real.

3.3. West Texas: Transient Deformation

To illustrate how our detection and uncertainty quantification workflow on a transient deformation signal, we also
processed Sentinel‐1 interferograms containing the coseismic deformation signal of the 26 March 2020 MW 5.0
earthquake near Mentone, TX (Skoumal et al., 2020). First, using one coseismic interferogram from 2020/03/25
to 2020/04/04, we derived the 1D PSD of this interferogram and simulated interferograms that follow the same
spectrum. We detected spatially coherent features from these simulated interferograms and produced the 2D PDF
of the size and magnitude of the detected noise features. We then detected features in the coseismic interferogram
and compared the results to the noise PDF.

We then averaged 7 coseismic interferograms which all contain the signal of interest. We followed Section 2.3 to
estimate the tropospheric noise PSD of each of the 14 SAR acquisition date. We then generated seven noise‐only
synthetic interferograms using these PSDs, and recorded the size and magnitude of the detected features in the
averaged synthetic interferogram. We repeated this process and generated the PDF of the tropospheric noise
features from simulated 7‐interferogram stacks. Finally, we assigned a confidence to all detections on the real
earthquake deformation map.

4. Results and Discussion
4.1. Synthetic Test Results

Figure 6a shows all 14 detected candidate features in the synthetic test case, where 10 synthetic deformation
features (with magnitudes ranging from 0.5 to 3.5 cm) are added to a random noise field with peak‐to‐peak
magnitude of 2.5 cm. Given that many of the candidate features have a high probability of being from turbu-
lence noise, we quantified the uncertainty by plotting the feature size r (km) and feature magnitude | d̄| (cm)
against the estimated 2D turbulence noise probability density function (PDF). As shown in Figure 6b, the four

Figure 6. A synthetic test case. (a) A simulated field of 10 deformation bowls, with magnitudes ranging from 0.5 to 3.5 cm,
superimposed on a synthetic noise field with peak‐to‐peak magnitude of 2.5 cm. Colored circles indicate locations of 14
detected candidate features. (b) The Probability Density Function (PDF) (PDF) of the detected noise features as a function of
feature size (km) and feature magnitude (cm) for the synthetic case. Darker blue indicates regions of higher probability for
detecting a noise feature. Four deformation features with the highest magnitudes all have very low chance of arising from
residual tropospheric noise ( p< 0.05).
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deformation features with the largest magnitudes all have very low probabilities of being noise ( p< 0.05).
Therefore, we labeled these as detected deformation features with high confidence.

4.2. Path 78 Detections

Figures 7a–7c shows three estimated tropospheric noise maps for Sentinel‐1 ascending Path 78 acquisitions 2017‐
12‐12, 2018‐09‐14, and 2017‐06‐15. We observe spatially coherent turbulence features ranging from a few ki-
lometers up to tens of kilometers in diameter, and the magnitude of the tropospheric turbulence noise varies
substantially on different days (Figure 7d). For example, the maximum absolute tropospheric noise observed on
2017‐12‐12, 2018‐09‐14, and 2017‐06‐15 are 1.8, 3.2, and 12.6 cm, respectively. Overall,∼50% of Path 78 scenes
were acquired in quiet atmospheric conditions with a maximum noise level under 4 cm. Approximately, 35%
scenes were acquired in moderate turbulence conditions (a maximum noise level of 4–10 cm), and 15% scenes
were acquired in strong turbulent noise conditions (a maximum noise level of 11–15 cm). Our results are
consistent with existing tropospheric noise studies that tropospheric noise does not always follow a Gaussian
distribution and may contain large outliers (Staniewicz et al., 2020; Zebker et al., 2023).

Because InSAR phases are measured with respect to a reference point, we calculated tropospheric noise estimates
relative to the center of the map (the noise reference point). We plotted the mean absolute tropospheric noise
versus distance to the noise reference point (Figure 7e). For the majority of the Path 78 acquisitions, tropospheric
turbulent noise increases as the square root of the distance for the first ∼50 km, and then the magnitude of the
tropospheric noise does not change much as the distance increases. This means that the tropospheric noise is
spatially correlated with a correlation length of ∼50 km, and the tropospheric noise magnitude over the flat
portion of the curve is a measure of the noise activity level. The 1D PSDs for the 84 tropospheric turbulence noise

Figure 7. InSAR‐estimated tropospheric turbulence noise maps along the LOS direction for three Path 78 SAR acquisitions: (a) 2017‐12‐12 (up to 1.8 cm noise),
(b) 2018‐09‐14 (up to 3.2 cm noise), and (c) 2017‐06‐15 (up to 12.6 cm noise). (d) The distribution of the maximum tropospheric noise magnitude (in centimeters)
observed in each of the 84 Sentinel‐1 West Texas acquisitions from Path 78. (e) The root mean squared value of tropospheric noise versus distance from the reference
point for 84 Sentinel‐1 scenes from Path 78. (f) The estimated 1D PSDs for 84 Sentinel‐1 scenes from Path 78. In panels (e, f), the color lines represent three SAR
acquisitions (panels (a–c)) with different tropospheric noise levels. The black line in panel (f) represents the mean Power Spectral Density of all 84 acquisitions. The
orange dotted lines show the − 8/3 power law slope.
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maps give an alternative view of the distribution of noise power over different frequencies (Figure 7f). For most
spatial frequencies, the PSDs decay with approximately the − 8/3 power law slope (dotted orange lines) described
in Hanssen (2001). This slope flattens at the low frequencies because we removed the quadratic phase in the noise
solutions. The slope also flattens at high frequencies, where decorrelation noise introduces pixel‐level variations
in the noise map.

We applied the automatic feature detection algorithm to three Path 78 LOS cumulative deformation maps over
three different periods of time: November 2014 to January 2017 (29 SAR acquisitions that span ∼2 years),
November 2014 to January 2018 (52 SAR acquisitions that span ∼3 years), and November 2014 to January 2019
(84 SAR acquisitions that span ∼4 years). By imposing the prior knowledge that oil‐ and gas‐production‐related
deformation bowls are unlikely to be larger than 30–40 km in the Permian Basin (Staniewicz et al., 2020), the
maximum detected feature radius r was set to 20 km. We also applied the feature detection algorithm to the
synthetic noise‐only surface deformation maps, and recorded the statistics of the tropospheric noise features for
the 2‐year, 3‐year, and 4‐year cases, respectively (Figure 8). We found that most tropospheric turbulence noise
features have small radii (r < 5 km). For the 29 SAR acquisition (∼2‐year) case, the noise features are unlikely to
be larger than 2 cm in magnitude or have a filter response stronger than 0.7. For the 52 SAR acquisition case (∼3‐
year), the noise features are unlikely to be larger than 1.5 cm in magnitude or have a filter response stronger than
0.6. For the 84 SAR acquisition case (∼4‐year), the noise features are unlikely to be larger than 1.2 cm in
magnitude or have a filter response stronger than 0.5. This agrees with the InSAR deformation mapping un-
certainty estimated based on independent GPS validation for the same path 78 Sentinel‐1 data set (Staniewicz
et al., 2020). Using the empirical PDFs of the noise attributes, we removed detections with more than 5% chance
of being noise from three Path 78 cumulative deformation maps (Figure 9). We identified 57 deformation features
in the Nov. 2014–Jan. 2017 cumulative deformation map, 147 features in the Nov. 2014–Jan. 2018 map, and 268
features in the Nov. 2014–Jan. 2019 map. The increasing number of detected deformation features is consistent
with the sharp rise in the rate of oil and gas production over the study period (Figure S2 in Supporting

Figure 8. (a–c) Log Probability Density Function (PDF) (PDF) of detecting tropospheric noise features as a function of feature size r and filter response magnitude |g| for
three cumulative LOS deformation maps: November 2014–January 2017 (29 SAR scenes from Path 78), November 2014–January 2018 (52 SAR Scenes from Path 78),
and November 2014–January 2019 (84 SAR Scenes from Path 78). (d–f) Log PDF (PDF) of detecting tropospheric noise features as a function of feature size r and
feature magnitude |d| for the same three cumulative LOS deformation maps. The PDFs were generated from 2D histograms using a kernel density estimate (Scott, 2015).
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Information S1), as well as the reduced noise level in the InSAR cumulative deformation solutions resulting from
a larger number of SAR acquisitions. The detected features are mainly clustered in regions within the Midland
Basin and the Delaware Basin, which are spatially correlated with oil production and wastewater injection ac-
tivities (Hennings et al., 2023). In the Southern Delaware Basin, the observed linear deformation features parallel
the inferred favorable fault plane orientation proposed by Lund Snee and Zoback (2018), and they align with a
cluster of recent shallow earthquakes cataloged by TexNet (Savvaidis et al., 2019). Very few deformation features
were detected in the Central Basin Platform, where oil and gas are mostly produced from conventional reservoirs
and the subsurface pressure was well maintained.

We note that real deformation signals may leak into individual noise estimates derived from the common
reference stacking approach. To demonstrate the effect of imperfect tropospheric noise estimates, Figure 10a
shows the tropospheric noise estimates on a typical date (2018‐09‐04), and Figure 10b shows the cumulative
linear LOS deformation solution over the entire study period (from Nov. 2014 to Jan. 2019; the deformation
signals in most individual interferograms are much smaller). The estimated 1D PSDs for the noise‐only map and
the noise plus deformation map are very similar (Figure 10c), and thus the simulated interferograms derived from
these two PSDs follow similar spectra. This is because the observed phases in individual West Texas Sentinel‐1
interferograms are mostly associated with up to ±15 cm tropospheric turbulence noise, and the expected
deformation signal magnitude (∼a few millimeters to centimeter per year) is much smaller. We conclude that the
presence of millimeter‐to‐centimeter level deformation signals does not lead to noticeable errors in tropospheric
noise spectrum estimates, nor the simulated noise maps, for our West Texas case.

4.3. Path 85 Detections

Similar to the ascending Path 78 results, approximately 50% of descending Path 85 scenes were acquired in quiet
atmospheric conditions with a maximum noise level under 4 cm (Figure 11a). However, only 2 out of 81
descending scenes were acquired in strong turbulent noise conditions (a maximum noise level over 10 cm), while

Figure 9. Detected deformation features (gray circles) from the three Path 78 cumulative LOS deformation maps. Features with more than 5% chance of being noise have
been removed. Green lines correspond to the boundaries of the Delaware Basin, Central Basin Platform, and Midland Basin from west to east.

Figure 10. (a) InSAR‐estimated tropospheric noise map along the LOS direction for the Path 78 SAR acquisition 2018‐09‐14. (b) Cumulative LOS deformation from
Nov. 2014 to Jan. 2019 as inferred from Sentinel‐1 Path 78 InSAR data. (c) 1D PSDs derived from the tropospheric noise map (black) and the tropospheric noise plus
deformation map (red).
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14 out of the 84 ascending scenes were acquired in such conditions. We also found that the average tropospheric
noise level is lower for Path 85 than Path 78 (Figures 11b–11c). For example, the mean absolute tropospheric
noise is 50% larger for Path 78 than Path 85 at 50 km, and the mean noise power density is more than 2 times larger
for Path 78 than Path 85 at a spatial frequency of 0.1 cycles/km.We summarized the noise statistics of Path 78 and
Path 85 acquisitions in Table 1. Our tropospheric noise estimates for ascending and descending paths are
consistent with the fact that Sentinel‐1 satellites acquire Path 78 data over West Texas at 7:50 p.m. local time, and
Path 85 data at 6:55 a.m. local time. The expected tropospheric noise signatures are typically more substantial in
late afternoon than early morning.

Our algorithm identified similar numbers of spatially coherent features from the ascending and descending cu-
mulative LOS deformation maps that span the same period of interest (Figure 12). Because the tropospheric noise
level is generally lower in Path 85 data, fewer Path 85 detections need to be removed because they have more than
5% chance of being tropospheric noise. As a result, we detectedmore deformation features from the Path 85 data set
than from the Path 78 data set. The number of detected deformations from both paths increases substantially over
the study period, which follows the significant rise in oil production within the Permian Basin due to advances in
shale recovery technologies (Figure S2 in Supporting Information S1). It is also worth noting that the InSAR
cumulative LOS deformation maps from both paths were validated using independent GPS observations
(Staniewicz et al., 2020). The Path 78 and Path 85 maps appear different. This is because (a) the ascending and
descending LOS unit vectors are different; and (b) non‐negligible eastward deformation signals are present in
the Delaware Basin, which contribute to the ascending and descending LOS deformation in different ways.

4.4. Transient Deformation Detection

Figure 13a shows a 30 km‐by‐30 km Sentinel‐1 interferogram (2020/03/25–2020/04/04; Path 85) that contains the
Mentone earthquake coseismic deformation signal. Despite the small study area, the 2D PDF shows that the
magnitude of tropospheric noise features regularly reached 1 cm (Figure 13b). We applied the automatic feature
detection algorithm to the co‐seismic interferogram shown in Figure 13a, which detected the coseismic defor-
mation feature and several of the stronger tropospheric noise features. Although the algorithm detected the real

deformation feature (green circle), we only computed a moderate confidence
level ( p = 0.06) that this feature was not a turbulence artifact. Similar
magnitude atmospheric artifacts (confidence p = 0.08,0.11) are also detec-
ted in the interferogram.

After averaging more interferograms that span the same earthquake, the noise
level is reduced and the confidence of detection substantially increases. Using
7 interferograms formed from 14 SAR acquisitions (7 before and 7 after the
earthquake), the resulting coseismic deformation map contains considerably
fewer visual tropospheric noise artifacts (Figure 13c). Correspondingly, the
estimated PDF of tropospheric noise features shows lower probability for

Figure 11. (a) The distribution of peak tropospheric noise magnitude (in centimeters), (b) the root mean squared value of tropospheric noise versus distance from the
center of the map, and (c) the estimated 1D PSDs for 81 Sentinel‐1 Path 85 acquisitions used in this study. In panels (b, c), the color lines represent the average estimates
for Path 85 (orange) and Path 78 (purple).

Table 1
Tropospheric Noise Characteristics for Sentinel‐1 Path 85 and Path 78 Data
Over West Texas

Path 78 Path 85

Average Variance [cm2] 1.38 0.78

Variance of the Noisiest Date [cm2] 10.68 3.74

Average Peak Amplitude [cm] 5.36 4.58

Peak Amplitude of the Noisiest Date [cm] 15.81 13.72
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Figure 12. Detected deformation features (gray circles) from the three Path 85 cumulative LOS deformation maps. Features with more than 5% chance of being noise for
their radius have been removed. Green lines illustrate the boundaries of the Delaware Basin and Central Basin Platform, from west to east.

Figure 13. (a) A coseismic interferogram (2020/03/25–2020/04/06) that spans the 26 March 2020 Mentone earthquake,
Texas. Color circles indicate the top 3 detected features. The focal mechanism plot was derived by USGS National
Earthquake Information Center. (b) Probability Density Function (PDF) (PDF) of the detected noise features from simulated
interferograms as a function of feature size (km) and feature magnitude (cm) for the single interferogram case. Color dots
show the three detected features in panel (a). (c) Estimated coseismic LOS deformation as derived from averaging 7
interferograms that span the March 26 event. The green circle shows the one detected feature with very high likelihood of
being real ( p< 0.001). (d) PDF of the detected noise features from simulated interferograms as a function of feature size
(km) and feature magnitude (cm) for the 7‐interferogram stacking case. The green dot indicates the detected feature in panel (c).
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∼1 cm features (Figure 13d). When we applied the automatic feature detection algorithm to this improved
deformation map in Figure 13c, we detected one deformation feature with very high confidence ( p< 0.001). This
feature matches the deformation pattern previously reported by Skoumal et al. (2020). This example demonstrates
how our algorithm accurately represents uncertainty in scenarios with limited data (single interferogram), while
also capturing the improved confidence that comes from reducing tropospheric noise through stacking multiple
interferograms.

4.5. Detection Threshold Analysis for Path 78 and Path 85 Noise Levels

We performed synthetic tests designed to quantify our algorithm's sensitivity, precision, and robustness. We
assessed performance on cumulative deformation mapping by simulating synthetic deformation signals and
adding realistic noise derived from estimated tropospheric noise levels for both ascending (Path 78) and
descending (Path 85) data sets.

We simulated tropospheric noisemaps based on the Path 78 PSDs (Figure 7f), matching the number of dates used in
our real 4‐year cumulative LOS deformation analysis (November 2014–January 2019). We generated cumulative
deformation maps by stacking the synthetic noise interferograms and superimposing 20 randomly placed defor-
mation bowlswith radii ranging from2 to 7 km at fixed amplitudes.We applied our detection algorithm to the noisy
synthetic deformation maps and used the turbulence noise PDFs (Figure 8) to compute a probability that the de-
tections were noise artifacts. We recorded true detections, false positives, and missed detections to find perfor-
mance metrics. We repeated this simulation using deformation amplitudes ranging from 0.5 to 3 cm in increments
of 0.25 cm.

The synthetic test shows that our algorithm reliably detects deformation with amplitudes 1 − 1.5 cm under noise
conditions similar to the Path 78 data set (Figure S3 in Supporting Information S1).We calculated the precision (the
fraction of detected features that are true deformation signals), recall (the fraction of true signals successfully
detected), and the F1 score (the harmonic mean of precision and recall) of our algorithm at each simulated
deformation level. The precision exceeds 0.8 for all amplitudes of 1.25 cm or greater (Figure S3e in Supporting
Information S1). Both recall and F1 score approach 0.9 at ∼1.5 cm (Figures S3f and S3g in Supporting
Information S1). Testing a p‐value threshold of 0.001, 0.01, and 0.05 (Figure S3 in Supporting Information S1,
colored lines), showed that the precision and recall metrics are relatively insensitive to the choice of threshold.

We performed the same analysis on the Path 85 cumulative 4‐year data set (Figure S4 in Supporting Informa-
tion S1). Since the noise power is smaller for this descending data set (Figure 11), the confidence of the detections
rises more quickly as our simulated deformation signals increase in amplitude. For example, the recall (Figure
S4b in Supporting Information S1) reaches above 0.95 for signals 1.5 cm an larger, compared to a recall of
approximately 0.8 under the noisier conditions of Path 78.

4.6. Temporal and Spatial Stationarity of Tropospheric Noise

Previous studies have investigated the seasonal amplitude variations of tropospheric noise in InSAR (Fattahi &
Amelung, 2015). In our West Texas InSAR analyses, we included a similar number of acquisitions from each
season to mitigate bias resulting from sampling irregularities. Although the PSDs shown in Figure 7f exhibit
variations in power between different seasons, we observed minimal differences in the final noise PDFs when
simulating noise maps using individual PSDs or the average PSD. When the temporal sampling rate is irregular,
simulating tropospheric noise from seasonally‐matching PSDs can lead to more accurate uncertainty quantifi-
cation results.

Under the assumption of a second‐order stationary random field, tropospheric turbulence noise can be fully
described by its PSD representation (Chiles & Delfiner, 2012). This turbulence noise is isotropic when it follows
the 3D Kolmogorov turbulence model (Hanssen, 2001). In this case, second‐order stationarity in space is
reasonable due to the deramping step performed on unwrapped interferograms. Although atmospheric noise may
contain other anisotropic components in addition to the turbulence component of tropospheric noise (e.g., weather
fronts moving in a specific direction based on the region's topography), these anisotropic weather effects do not
typically produce artifacts similar to real deformation features in the final surface deformation map. The radially‐
averaged PSD used in this study provides a good approximation of the tropospheric turbulence noise that shares
spatial characteristics similar to deformation features (Hanssen, 2001).
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5. Conclusion
In this study, we introduced a computer vision algorithm to automatically detect spatially coherent deformation
features from InSAR surface deformation maps and quantify the likelihood that these detections arise from
tropospheric turbulence noise. The detection algorithm identifies deformation features of various sizes and
amplitudes without relying on labeled training data. To robustly quantify uncertainty of noise artifacts, we
characterized the turbulent tropospheric noise component directly from the InSAR data by estimating its PSD and
generating synthetic noise samples. This allowed us to empirically assess detection reliability without requiring
additional data or model for tropospheric noise characterization.

Our synthetic tests show high precision and recall for identifying deformation signals larger than ∼1.5 cm. We
applied the method to the InSAR cumulative deformation maps over the Permian Basin from late 2014 to 2019,
confidently detecting localized deformation associated with increased oil and gas production. Additionally, we
demonstrated the algorithm's uncertainty quantification capabilities on single interferograms containing small,
transient deformation signals. Our technique can be readily integrated with existing InSAR time series methods,
facilitating large‐scale deformation analyses of local deformation signals and comprehensive uncertainty
quantification.

We emphasize that our InSAR‐based deformation detection method is based on the assumption that random
tropospheric turbulence noise is the dominant noise term. Outside the flat, arid Permian Basin, the dominant noise
source may differ. In densely vegetated regions or areas with seasonal snow, decorrelation noise and phase‐
unwrapping errors can be non‐negligible, so a more realistic uncertainty model could be obtained by incorpo-
rating the full coherence history (Zwieback & Meyer, 2022) or by using ensemble‐processing strategies (Olsen
et al., 2023). These extensions are additive, and may be combined with the computer‐vision processing frame-
work presented here.

Data Availability Statement
The software package for simulating tropospheric turbulence noise is available on Zenodo at Staniewicz (2025b).
The package for estimating atmospheric noise and detecting deformation features is available at Zenodo at
Staniewicz (2025a). Sentinel‐1 single‐look complex (SLC) images can be accessed from the Alaska Satellite
Facility (ASF) DAAC. Processed InSAR deformation maps for West Texas from Staniewicz et al. (2020) used in
this study are available at the Texas Data Repository at Staniewicz and Chen (2020).
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