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Abstract

Surface Deformation Mapping and Automatic Feature

Detection over the Permian Basin using InSAR

Scott Staniewicz, Ph.D.

The University of Texas at Austin, 2022

Supervisor: Jingyi Ann Chen

The Permian Basin has become the United States’ largest producer of oil and gas
over the past decade. During the same time, it has experienced a sharp rise in the
number of induced earthquakes. In order to better understand the damage potential
from induced earthquakes, new data and monitoring approaches are critically needed.
Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that
measures surface deformation over broad areas with 10s-100s meter spatial resolution
and up to millimeter-to-centimeter accuracy. These measurements can be used to
derive information about Earth’s subsurface and assess induced seismic risks. How-
ever, it is difficult to perform basin-scale surface deformation mapping and automatic
feature detection using InSAR because the signal-to-noise ratio (SNR) of the deforma-
tion signals compared to tropospheric noise is extremely low. It is common to assume
that the Permian Basin is rigid enough that the subtle deformation associated with
oil and gas production and wastewater injection are not detectable by InSAR.

In this dissertation, we develop methods for characterizing tropospheric noise
and its power spectral density directly from InSAR observations. We show that the
tropospheric noise distribution is non-Gaussian, and a small portion of SAR scenes
are corrupted by up to ± 15 cm noise outliers associated with storms and heat waves.
This finding is significant because most of the InSAR time series solutions are optimal
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only when noise follows a Gaussian distribution. We design robust and scalable time
series algorithms to reconstruct the temporal evolution of surface deformation in this
challenging scenario, and we achieved basin-wide millimeter-level accuracy based on
independent GPS validation. We observe numerous subsidence and uplift features
near active production and disposal wells, as well as linear deformation patterns
associated with fault activities near clusters of induced earthquakes. Furthermore,
we designed a new computer vision algorithm for detecting the size and location
of unknown deformation features in large volumes of InSAR data. We are able to
determine whether a detected feature is associated with tropospheric artifacts or real
deformation signals based on a realistic tropospheric noise model derived from InSAR
data.
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Chapter 1

Introduction

1.1 Problem Background

The Permian Basin, stretching from eastern New Mexico and covering most of
West Texas, has become the United States’ largest producer of oil and gas over the
past decade (Figure 1.1a). The region’s production began to take off around 2009,
largely due to advances in horizontal drilling and multi-stage hydraulic fracturing.
The rapid expansion of oil and gas production from shale formations has created
positive economic impacts as well as sociopolitical concerns, given that researchers
have long recognized that injection or withdrawal of fluids from the subsurface can in-
duce earthquakes along existing faults (Council, 2013, Simpson et al., 1988, Ellsworth,
2013). Similar to other oil production and wastewater injection sites around the world
(e.g. the central and eastern United States, Canada, China, and Italy) (Foulger et al.,
2018), the Permian Basin has experienced a dramatic rise in the rate of low magni-
tude earthquakes over the past decade (Frohlich et al., 2016a, Atkinson et al., 2016,
Frohlich et al., 2019, Lomax and Savvaidis, 2019, Savvaidis et al., 2020, Skoumal
et al., 2020a) (Figure 1.1b). For example, Texas recorded over 200 magnitude 3.0
or greater earthquakes in 2021, second only to California in the contiguous United
States. While petroleum production and wastewater injection volumes have been ris-
ing throughout the basin, the recently cataloged earthquakes are spatially clustered.
In order to assess the damage potential from induced and triggered earthquakes, we
need to acquire new data and develop new monitoring approaches to better under-
stand which earthquakes are induced, which wells they are associated with, and why
some high-rate wells experience seismicity while others do not.

In 2017, the State of Texas funded a state-wide seismicity monitoring system,
known as TexNet, which enables the cataloging of earthquakes across Texas at mag-
nitudes down to M2.0 (Savvaidis et al., 2019). However, it is difficult to examine the
mechanism, scale, scope, and consequences of induced seismicity in the geologically-
complex Permian Basin. This is because (1) in-situ measurements of the Earth’s
subsurface (e.g. the fault geometries and characteristics of the petroleum reservoirs)
are extremely limited; and (2) systematic and sustained collection of such data across
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Figure 1.1: (a) Location of Permian Basin within Texas. The subbasins colored
within the Permian Basin are (from west to east) the Delaware Basin (green), Central
Basin Platform (cyan), and Midland Basin (purple). (b) Yearly number of magnitude
3 or larger earthquakes recorded within Texas since 2000 (blue line), and average
daily oil production per year for Permian Basin wells in Texas (red line). Earthquakes
retrieved from USGS at https://earthquake.usgs.gov . Oil Production data retrieved
from the Texas Railroad Commission’s production query system at https://www.rrc.
texas.gov .

2

https://earthquake.usgs.gov
https://www.rrc.texas.gov
https://www.rrc.texas.gov


the ∼200,000 km2 basin represents a costly undertaking with significant technical
uncertainties (Hennings et al., 2021).

Since the launch of the Sentinel-1 mission in 2014, the quantity and quality of
open-access Interferometric Synthetic Aperture Radar (SAR) data has grown expo-
nentially. InSAR techniques can measure millimeter-to-centimeter deformation of
Earth’s surface over very wide areas with 10s-to-100s meter spatial resolution (Mas-
sonnet et al., 1993, Bürgmann et al., 2000). These high-quality surface deformation
measurements can be used to locate previously unknown faults, estimate the distri-
bution of fault slip, and infer associated seismic risk at low cost (Segall, 2010, Elliott
et al., 2016, Huang et al., 2017). Shirzaei et al. (2016) reported indications of surface
uplift due to wastewater injection near a 2012 M4.8 Timpson earthquake site, though
limited validation for the InSAR results was available (Semple et al., 2017). Kim and
Lu (2018) detected multiple deformation bowls within the Delaware Basin related
to wastewater injection, CO2 injection, and hydrocarbon production using Sentinel-1
InSAR data. Zheng et al. (2019) incorporated InSAR-derived surface deformation
data into a poroelastic model to analyze the geomechanical processes near an uplift
signal in northern West Texas. They discovered that the observed surface deforma-
tion was likely caused by injection well leakages rather than pressure increases at the
planned injection depth, and the leaks may have contributed to freshwater contami-
nation. Recently, Deng et al. (2020) used ascending Sentinel-1 measurements to infer
pore pressure change and Coulomb failure stress change at three sites in the southern
Delaware Basin. They suggested that certain groups of earthquakes are likely induced
by fluid injection, but noted that local rock structure and media properties are key
controls on the area’s susceptibility to induced seismicity. Zhai et al. (2021) incorpo-
rated surface deformation measurements into a geomechanical model to propose that
shallow injection is the dominant source of subsurface stress changes. Pepin et al.
(2022) determined that the magnitude of fault slip required for the surface deforma-
tion observed in a region of the southern Delaware Basin suggests that the slip is
predominantly aseismic.

The existing studies mainly focused on sites ∼ 60-by-60 km2 or smaller, and
basin-wide InSAR surface deformation data with detailed uncertainty quantification
are needed for assessing regional induced seismicity risk. It is difficult to expand the
InSAR spatial coverage to the entire Permian Basin while maintaining millimeter-level
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accuracy because InSAR tropospheric noise variance increases with the distance away
from a reference point (Emardson et al., 2003). There have been extensive efforts
for mitigating InSAR tropospheric noise artifacts using global atmospheric models
(GAMs) and other auxiliary data sources (Lauknes, 2011, Bekaert et al., 2015b, Doin
et al., 2009, Li, 2005, Ding et al., 2008). However, these mitigation methods often do
not have sufficient temporal and spatial resolution to capture tropospheric turbulence
noise from localized storms, heat waves, or turbulent mixing of water vapor that are
commonly observed in Sentinel-1 interferograms over West Texas.

Another challenge for large-scale InSAR analysis arises from the needs of auto-
matic detection of InSAR deformation features. Because residual tropospheric noise
is spatially coherent, these artifacts can be easily mistaken as real deformation fea-
tures. Previous studies have developed algorithms for detecting deformation signals
in pixel-wise InSAR deformation time series based on certain magnitude thresholds.
The thresholds can be set manually (Raspini et al., 2018), set using pixel-wise stan-
dard deviations (Bekaert et al., 2020), derived from auxiliary data sources (e.g. global
atmospheric weather models (Parker et al., 2015), MODIS water vapor measurements
(Barnhart and Lohman, 2013)), or derived from simulated noise parameters (Hava-
zli and Wdowinski, 2021). Principal component analysis (PCA) and independent
component analysis (ICA) have also been used to explore decompositions of noisy
time series data (Chaussard et al., 2014, Ebmeier, 2016, Gaddes et al., 2018). More-
over, deep learning methods using convolutional neural networks (CNNs) have been
applied to detect deformation features in individual interferograms (Anantrasirichai
et al., 2018; 2019a) or InSAR time series (Rouet-Leduc et al., 2021). Because the
detection problems are posed as a supervised learning task, they require either la-
beled training data (Anantrasirichai et al., 2018) or ground truth examples from
simulated noise and deformation models (Anantrasirichai et al., 2019b, Rouet-Leduc
et al., 2021). These supervised learning approaches work well when deformation sig-
nals of interest show spatial signatures that are distinct from InSAR measurement
noise. In many applications, both deformation signals and tropospheric turbulence
noise are spatially coherent “blob-like” features that look similar to human observers.
Additionally, not all algorithms have considered the detection uncertainty based on
the noise characteristics of a particular InSAR dataset.
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1.2 Contributions

The contributions of this dissertation center around designing scalable methods
to produce reliable surface deformation maps over large regions. We focus on the
mitigation of strong tropospheric noise, as well as the uncertainty quantification of
InSAR time series solutions. The contributions are summarized as follows:

1. We developed Python-based InSAR time series analysis software that processes
geocoded SAR images acquired from multiple imaging geometries and recon-
structs surface deformation in eastward and vertical directions.

2. We performed a rigorous analysis of all noise sources in the Permian Basin
Sentinel-1 InSAR data. We identified that the dominant noise term is the
tropospheric turbulence noise with up to 15 cm non-Gaussian outliers. We
developed methods for characterizing tropospheric noise and its power spectral
density directly from InSAR data, as well as methods for mitigating the impact
of the troposphere noise outliers.

3. We designed scalable, robust time series algorithms for reconstructing the tem-
poral evolution of surface deformation over very wide regions. Based on inde-
pendent validation from GPS permanent stations, we achieved millimeter-level
accuracy in the cumulative surface deformation solutions.

4. We developed a computer vision algorithm for automatically detecting surface
deformation signals of unknown sizes in basin-scale InSAR maps. The detection
algorithm produces uncertainty measures for each detected feature based on a
realistic tropospheric turbulence noise model.

5. Our InSAR deformation maps reveal numerous subsidence and uplift features
near active production and disposal wells, as well as linear deformation patterns
associated with fault activities near clusters of seismic activity. The maps are
now openly available through the Center for Integrated Seismicity Research
(CISR) for the broader scientific community and stakeholders.
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1.3 Thesis Roadmap

In Chapter 2, we introduce the principles of Interferometric Synthetic Aperture
Radar (InSAR). We start with a review of synthetic aperture radar (SAR) image
formation. We show how the phase difference between two SAR images acquired at
different times can be used to infer topography or surface deformation. We discuss
common InSAR noise sources and their origins, and we show how to combine many
interferograms to solve for a time series of surface deformation. Finally, we show how
the use of geocoded single-look complex (SLC) SAR images enables a simple InSAR
processing workflow.

In Chapter 3, we introduce the scientific background of the induced seismicity
problem. We first review the oil and gas production boom of the last decade within
the Permian Basin, as well as previous studies on the increase in low magnitude
earthquakes during this time. We then describe the geodetic datasets available for
monitoring the study site, and discuss the general InSAR data processing strategy
and data quality.

In Chapter 4, we present a simple yet effective time series method for mapping
cumulative surface deformation over very wide regions. The method incorporates an
automated outlier detection and removal algorithm, which enabled 2 mm/year accu-
racy in the presence of severe non-Gaussian tropospheric noise based on indepedent
GPS validation.

In Chapter 5, we expand our robust time series methods for reconstructing non-
linear deformation. We present an InSAR time series analysis algorithm using non-
parametric Locally Weighted Scatterplot Smoothing (LOWESS). We apply this method
to derive the temporal evolution of surface deformation (2015-2021) over the Permian
Basin using Sentinel-1 data.

In Chapter 6, we develop a computer vision algorithm based on Laplacian of
Gaussian filters for automatically detecting surface deformation signals in InSAR
maps. To quantify the likelihood that a detected feature is related to tropospheric
noise artifacts, we estimate the tropospheric noise spectrum directly from InSAR data
and simulate new instances of noise that resemble the actual InSAR observations.

Finally, we conclude with a summary and suggest areas of future work in Chapter
7.
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Chapter 2

Radar Interferometry Background

In this chapter, we introduce the technical principles of Interferometric Synthetic
Aperture Radar (InSAR). We provide background on Synthetic Aperture Radar
(SAR) image formation and show how the phase difference between two SAR im-
ages acquired at different times can be used to infer surface deformation. We outline
common InSAR noise sources, and we show how to combine many interferograms
to derive time series of surface deformation. Finally, we outline an efficient InSAR
processing workflow using geocoded single-look complex (SLC) images.

2.1 Radar Imaging

While originally an acronym for “RAdio Detection And Ranging”, radar has en-
tered into the common vernacular. Unlike passive sensors, such as optical cameras,
that rely on illumination from outside sources, a radar is an active sensor that emits
its own electromagnetic energy. As such, radars are able to operate both day and
night, and they generally operate at microwave frequencies that are not blocked by
clouds (between ∼ 1 GHz and 300 GHz, or wavelengths of 3 m to 1 mm).

The original radars developed during World War 2 were for tracking the position
of targets. In these systems, the range to the target is calculated from the round trip
travel time of an electromagnetic pulse that reflects off the target, and the angle is
determined by the antenna pointing direction. Researchers later developed imaging
radar systems that convert a series of radar pulses on a moving platform into a two-
dimension image. Although these side-looking radar images originally had coarse
resolution, fine resolution images were first demonstrated in the research led by Carl
Wiley at Goodyear in the 1950s. The research later led to the imaging technique
known as Synthetic Aperture Radar (SAR) (Wiley, 1954; 1985).

The first demonstration of a spaceborne Earth-observing SAR mission with in-
terferometric capability was Seasat, launched by NASA in 1978 (Born et al., 1979,
Gabriel et al., 1989). Since that time, there have been dozens of missions launched by
various space agencies, leading some to call the last decade “the golden age of SAR”
(Moreira, 2014).
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Figure 2.1: Timeline of government-sponsored SAR missions since 1990. Bar lengths
indicate life span of mission. Bars which intersect the right edge indicate ongoing
missions. Colors indicate the space agency operating the mission. Missions which
provide data free of charge to the general public (as of May 2022) are marked with
blue stars. Vertical sections of the timeline are divided by the radar frequency of
the sensor, showing (from top to bottom) the X-band, C-band, and L-band missions.
Note that SIR-C/X-SAR and SRTM were equipped with both C- and X-band sensors.
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Figure 2.1 shows a timeline of SAR missions that have been launched by gov-
ernments and space agencies since 1990. The missions are grouped vertically into
the three most commonly used frequency bands for SAR sensors in Earth-observing
missions: L-band (wavelengths of ∼24 cm), C-band (∼6 cm) and X-band (∼3 cm).
During the 90s, the European Space Agency (ESA) launched two C-band SAR satel-
lites: ERS-1 in 1991 and ERS-2 in 1995. The ERS-1 satellite provided the first
practical demonstration of spaceborne InSAR’s ability to capture surface deformation
when Massonnet et al. (1993) mapped the surface deformation pattern caused by the
1992 earthquake in Landers, California. The first L-band SAR satellite, JERS-1, was
launched by NASDA1 in 1992, and the Canadian Space Agency (CSA) launched their
own C-band mission, RADARSAT-1, in 1995. In 2000, NASA flew the 11-day Shuttle
Radar Topography Mission (SRTM) to generate the first high-resolution near-global
topographical map of Earth (Farr et al., 2007).

The most influential recent SAR mission within the science community has been
Sentinel-1 (Torres et al., 2012). First launched in 2014, the Sentinel-1 satellites acquire
∼240 km wide images (Zan and Guarnieri, 2006), allowing them to revisit any point
on Earth every 12 days. Additionally, Sentinel is the first mission of its kind to
provide regularly updating free public data. While Sentinel-1 is currently the only
active SAR mission with an open data policy, the future NASA-ISRO SAR mission
(NISAR) will also provide L-band SAR data free to the public (Rosen et al., 2015).

In the past four years, the first small SAR SmallSats (satellites weighing under
180 kg) have been launched by a series of private companies (Figure 2.2). Finland’s
ICEYE had its first succesful launch in January 2018, while Capella Space had their
first launch 11 months later. Seven other companies have since launched at least 1
SAR satellite, and in the next five years, there are plans to launch over 500 additional
SAR SmallSats (Kulu, 2021). While many large SAR constellations expect sub-hourly
revisit time for any given point on earth (Stringham et al., 2019), only the large
government SAR missions, such as Sentinel-1, ALOS, and NISAR, explicitly plan
for consistent global coverage in their mission objectives. However, the possibility
of daily or hourly InSAR revisit times opens many new applications previously not
possible with the 6-12 day revisit times of large SAR missions (Yague-Martinez et al.,

1Although JERS-1 is labeled as a JAXA mission in Figure 2.1, it was run by NASDA at the time.
In 2003, NASDA merged with two other Japanese space agencies, ISAS and NAL, to form JAXA.
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Figure 2.2: SAR constellations run by private companies, showing the number of cur-
rently launched satellites (blue) stacked under the number of future planned launches
(gold). Note the broken y-axis scale, as two companies are planning constellations of
96 satellites.
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2021, Taylor et al., 2021, Kitajima et al., 2021).

2.2 Synthetic Aperture Radar

Synthetic Aperture Radar is an imaging technique that uses a radar mounted on
a moving platform. A two-dimensional image is created by coherently processing the
returned energy from transmitted pulses. While the images are often displayed in
grayscale and may appear similar to optical images, they represent the electrical and
geometrical properties of the objects in the scene (Simons and Rosen, 2007).

The SAR imaging geometry is shown in Figure 2.3. A side-looking radar with look
angle θ moves in the azimuth direction and repeatedly emits pulses at some interval
(called the pulse repetition interval, or PRI) which travel in the range direction. The
line of sight (LOS) vector is defined as the unit vector pointing from the radar antenna
to a point in the illuminated swath. Each pulse illuminates a portion of the ground
known as the radar footprint.

The signal-to-noise ratio (SNR) of the system depends on the total energy trans-
mitted. SNR can be increased by either sending a higher peak power (which is often
limited by design constraints) or sending pulses with longer duration τ . This choice
creates a dilemma: in the absence further processing, sending pulses with a larger
τ results in coarser range resolution δr, where resolution is the ability to distinguish
points illuminated by the same radar pulse. The illuminated size in range is δr = cτ

2
,

where c ≈ 3× 108 m/s is the speed of light. Thus, a pulse with τ = 30 microseconds
would have a resolution of approximately 4.5 km.

For this reason, SAR systems usually transmit pulsed waveforms called chirps
whose frequency f increases or decreases over time. For example, in a linear frequency
modulated (LFM) chirp, the frequency can be written as f(t) = kt for −τ/2 < t <

τ/2, where k is the chirp slope (in Hz / s). These special waveforms allow the receiver
to correlate the returned echoes with a matched filter, or a replica of the transmitted
chirp. The improved range resolution depends on the frequency bandwidth of the
chirp: BW = fmax − fmin. For a given BW , the range resolution can be written as
δr = c

2BW
.
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Figure 2.3: A platform moving in the azimuth/along-track direction contains a radar
instrument with look angle θ. The slant range r to the ground point is measured along
the line-of-sight (LOS) direction from the antenna to the ground. The radar antenna
shown has length L (in the azimuth direction) and width w. As the radar sends out
pulses, each one illuminates into an area on the ground called the beam “footprint”
(oval shape).

Figure 2.4 demonstrates the effect of using a chirp waveform on range resolution.
An example chirp with parameters matching the ERS-1 satellite (Figure 2.4a) has a
duration of τ ≈ 37.12µs and chirp slope k = 4 × 1011Hz/s, resulting in frequency
bandwidth BW = kτ ≈15.5 MHz (Figure 2.4b). By convolving the transmitted
chirp with its complex conjugate, we get the impulse response of a point scatterer
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(Figure 2.4c). If a chirp with the same time duration had a smaller slope k (Figure
2.4d), the bandwidth would shrink by the same proportion (Figure 2.4e), and the
impulse response would also have worse resolution (Figure 2.4f). Thus, we see that
using chirped waveforms eliminates the original problem, as a longer pulse with larger
bandwidth actually has a better resolution than a shorter pulse.
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Figure 2.4: (a) The real part of a linear frequency-modulated chirp with a duration
of τ ≈ 37.12µs and a chirp slope k = 4 × 1011Hz/s. (b) The magnitude of the
Fourier transform of the chirp is approximately a rectangle function, which shows the
chirp bandwidth BW = kτ ≈ 15.5 MHz. (c) Matched filtering of the returned echo
from one point scatterer yields the impulse response, which shows the approximate
10 meters of range resolution (or ∼65 ns in time). (d) For a chirp with the same
slope k and 1/3 the duration τ the frequency bandwidth is also cut by 1/3 (e), the
corresponding impulse response (f) and range resolution is 3 times worse.

In the azimuth direction, the size of the radar footprint determines which ground
points can be distinguished from the echo of one pulse; this is known as the real
aperture radar (RAR) resolution. The footprint size can be written as rλ/L, where r
is the target range, L is the along-track antenna length, and λ is the radar wavelength.
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The earliest imaging radar platforms were limited to this resolution in azimuth. For
an airborne platform with a 1 meter antenna imaging at C-band, this would be a
∼600 meter resolution. Note that for some applications, such as military detection
applications or wide-area ocean mapping, this azimuth resolution is sufficient (Simons
and Rosen, 2007); however, the RAR resolution for spaceborne radars is on the order
of 10s of kilometers, which is far too coarse for most applications.

The resolution in azimuth is greatly improved by creating a synthetic aperture,
which is a technique that focuses the image using a series of reflected echoes (Figure
2.5). Coherent processing (i.e. using both magnitude and phase) is possible by
carefully tracking each target’s phase history, φ(t), which is related to the range to
the target r(t):

φ(t) = −4π

λ
r(t) . (2.1)

There are multiple signal processing algorithms which use the target’s phase history to
create a synthetic aperture. One of the first developed and most widely today used is
the range-Doppler algorithm (RDA) (Wu, 1976, Cumming and Bennett, 1979). RDA
uses the apparent shift in Doppler frequency due to the platform motion to create a
matched filter in azimuth, similar to the matched filter used for range compression
(Cumming and Wong, 2004). An alternative to RDA is time-domain backprojection
(Duersch, 2013), which provides a more exact phase compensation at the cost of being
more computationally expensive. The backprojection algorithm collects the energy
from every radar pulse containing a ground point and compensates for the range-
dependent phase. The complex-valued radar image S (also known as a single-look
complex image, or SLC) at pixel location (x, y) can be formed by summing over all
pulses and applying for a range-dependent term to cancel the propagation phase:

S(x, y) =
∑
k

sk (tk) e
j 4π
λ
rk(x,y) (2.2)

where j =
√
−1, rk(x, y) is the range distance from the radar sensor to the point (x, y)

at the time of the kth pulse, sk(tk) is the complex value of the kth range-compressed
pulse at time tk = rk(x, y)/c, and c is the speed of light (Zebker, 2018). If the radar
imaging geometry is known precisely so that rk can be computed for all pulses, the
coherent summation can be performed for each pixel to focus the SAR image.
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Figure 2.5: (Top) One point on the ground is illuminated by a series of pulses (only
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a target. Coherently processing all pulses forms synthetic aperture of length Ls.
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For all image formation methods, the final achievable azimuth resolution δaz is

δaz =
L

2
(2.3)

where L is the physical antenna length in the azimuth direction. Since typical space-
borne satellites have antenna lengths on the order of 5-10 meters, the resulting δaz is
around 2.5-5 meters. The intuition behind this surprising result is that, unlike with
RAR, a smaller physical antenna size L leads to a wider angular beam width λ/L.
This means that a given target is illuminated for a longer time, leading to a greater
number of pulses to coherently process. Thus, the azimuth resolution will actually
improve with a smaller antenna size.

2.3 SAR Interferometry

Interferometric Synthetic Aperture Radar (InSAR) refers to a broad class of ap-
plications that exploit the phase difference between two SAR images to obtain ex-
tra information beyond the 2D locations of points (Bamler and Hartl, 1998). The
most common applications are generating topography maps (Graham, 1974, Zebker
and Goldstein, 1986) and mapping surface deformation (Goldstein and Zebker, 1987,
Gabriel et al., 1989, Li and Goldstein, 1990, Massonnet et al., 1993, Rosen et al.,
2000). The InSAR measurement is made after precisely coregistering and resampling
two SLC images S1 and S2 to the same coordinates. The measurement I1,2 is formed
by multiplying each pixel of the first SLC S1 by the complex conjugate of the second
S2:

I1,2 = S1S
∗
2 = A1A2e

j∆φ1,2 (2.4)

where Sk = Ake
jφk , Ak is the amplitude of the kth image, and the phase φk = −4π

λ
rk.

The image I is called an interferogram, and the quantity ∆φ1,2 , φ1 − φ2 is the
interferometric phase.

For topography mapping, two SAR antennas are separated by a distance in the
across-track direction and each acquires a SAR image simultaneously2 (Figure 2.6).
The baseline causes the two radars to view the same point on the ground with a slight

2The acquisitions can also be at different times, under the assumption that no ground deformation
has occurred.
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Figure 2.6: InSAR imaging geometry for topography mapping. Two SAR images, S1

and S2, are acquired with a slight spatial separation. The measured phase difference
between S1 and S2 will change depending on whether we are viewing a point (a) on a
flat Earth reference, or (b) at some topographic height. The this allows us to use the
phase difference to infer the height of Ptopo above the reference Earth location Pflat.

change in angle. The difference in phase ∆φ between S1 and S2 is related to the
difference in the geometrical path length from each radar to the ground. This means
that ∆φ changes based on whether the satellites are viewing flat ground (Figure 2.6a)
or topography (Figure 2.6b). Thus, with precise knowledge of the viewing geometry,
the height of the topography can be inferred from the interferometric phase for each
point in the interferogram (Simons and Rosen, 2007).

The first widely successful InSAR topography mission was the 11-day SRTM in
2000 (Figure 2.1). The SRTM deployed one radar attached to the body of the Space
Shuttle Endeavour and one receive-only radar at the end of a 60 meter retractable
mast. The SRTM produced elevation data with 30-meter resolution for all Earth
land surface from -60◦ to 60◦ latitude. More recently, the TanDEM-X mission by
DLR produced a global DEM in 2016 with 12 meter pixels and 2 meter vertical
accuracy using two identical satellites flying in formation. However, the TanDEM-X
DEM is not publicly available like the SRTM DEM.

In repeat-pass InSAR (sometimes called differential InSAR, DInSAR, or occasion-
ally DIfSAR), a radar platform acquires two SAR images over an area at different
times, t1 and t2 (Figure 2.7). Assuming that the topography is known and can be
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Figure 2.7: InSAR imaging geometry for deformation mapping. (a) Two SAR images,
S1 and S2, are acquired at different times, before and after a ground deformation
event. After removing the contribution from topography, the change in range between
times t1 and t2 results in a measured phase change ∆φ1,2 = 4π

λ
(r2 − r1).

removed from the phase measurement, the remaining InSAR phase at each pixel
measures the change in range along the radar LOS direction:

∆φ1,2 =
4π

λ
(r2 − r1) (2.5)

Since the measurement uses the phase of the propagated radar waves, it is only known
modulo 2π; the process of obtaining the full continuous phase is known as phase
unwrapping (Goldstein et al., 1988, Chen and Zebker, 2001). Note that even after
phase unwrapping, the absolute number of 2π cycles from the radar to the ground
is not known; thus, an unwrapped interferogram represents the surface deformation
relative to some point that is assumed to be zero. Additionally, the description of the
interferometric phase in Equation (2.5) assumes no noise; in reality there are numerous
noise sources which affect either the phase of an individual SAR acquisitions or the
phase difference between pairs of images.
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2.4 InSAR Noise Sources

After removing phase contributions from topography and satellite geometry, the
phase at each pixel in an interferogram formed from SLCs S1 and S2 can be written
as

∆φ1,2 =
4π

λ
(∆d1,2 + ∆α1,2)+∆φiono+∆φorb+∆φdem+∆φdecor+∆φunwrap+∆φscat+∆φn,

(2.6)
where λ is the radar wavelength and ∆d1,2 is the surface deformation between S1 and
S2 along the radar LOS direction.

The term ∆α1,2 , α2 − α1 represents tropospheric noise arising from differences
in excess delay induced by the neutral atmosphere. Tropospheric noise is caused by
atmospheric pressure, temperature, or water vapor changes between the two radar
acquisitions (Zebker et al., 1997). Since tropospheric noise is the dominant noise for
the West Texas study of Chapters 4-6, the noise is further detailed in the following
section (Section 2.4.2).

Phase errors can also arise from variations in the index of refraction due to iono-
spheric heterogeneities, ∆φiono (Gray et al., 2000). Since the ionosphere is a dispersive
medium, the phase effects are dependent on radar frequency, with lower frequencies
seeing more distortion. The effect at C-band is approximately 1/16 the effect at
L-band (Liang et al., 2019). Additionally, the dependence on frequency enables mit-
igation techniques which split the radar spectrum into sub-bands to calculate phase
corrections (Rosen et al., 2010).

The terms ∆φorb and ∆φdem represent systematic errors resulting from impre-
cise knowledge of the platform’s orbital position or topographic height, respectively.
Orbital errors usually appear as a planar phase ramp in stripmap acquisitions. Al-
though these were common to see in ERS-1 or ENVISAT data, they rarely appear in
Sentinel-1 data due to its high precision orbit determination (Fattahi and Amelung,
2014). Errors in the DEM used to remove the topographic phase result in a spatial
baseline-dependent phase error (Fattahi and Amelung, 2013). These errors are often
small in Sentinel-1 data due to the tight control of the repeat orbit tube, but they
can be significant in mountains or regions with sharp topography changes.

Decorrelation errors, ∆φdecor, arise from a loss of coherence of the phase between S1

and S2 due to changes in the surface dielectric properties or scattering characteristics
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(Zebker and Villasenor, 1992, Michaelides et al., 2019, Ansari, 2018). The correlation
can be estimated from the complex coherence γ of the interferogram (Bamler and
Hartl, 1998)

γ =
〈S1S

∗
2〉√

〈S1S∗1〉
2 〈S2S∗2〉

2
(2.7)

where S∗2 is the complex conjugate of S2 and 〈·〉 denotes the statistical expectation
operator. The expectation is defined as an ensemble average, but in practice it is
estimated using some spatial window of pixels. The magnitude of this quantity ρ =

|γ| is called the correlation (or sometimes called the coherence), and varies from
0, indicating a complete loss of signal coherence, to 1, indicating perfectly correlated
radar echoes. When the correlation is very low, the phase unwrapping processing may
fail and produce patches of pixels which have 2π offsets from the correct value. These
are known as phase unwrapping errors, ∆φunwrap. For study areas which regularly
have strong decorrelation (e.g. agricultural areas), the technique known as persistent
scatterer interferometry is used to overcome decorrelation by locating the phase-
stable pixels which maintain coherence over long periods of time (Ferretti et al.,
2001, Agram, 2010, Hooper, 2006, Chen et al., 2016).

The term ∆φscat represents phase introduced by changes to the surface and sub-
surface scattering properties. This term is separated from the random decorrelation
noise, as recent studies have shown that systematic, non-random effects can occur
from changes to subsurface dielectric properties (e.g. from changes to soil moisture)
(Zan et al., 2014; 2015, Zwieback et al., 2015, Michaelides, 2020, Zheng et al., 2022).
Finally, ∆φn represents other residual noise terms, including thermal noise from the
radar antenna system, that are typically an order of magnitude smaller than the other
errors listed.

Although these effects have been presented as noise sources for deformation mon-
itoring applications, each one can be a signal of interest in other InSAR applica-
tions. For example, the phase variations from the troposphere have been used for
atmospheric mapping and meteorological purposes (Hanssen et al., 1999, Liu, 2012).
Additionally the presence of decorrelation indicates a change to the scattering surface
properties and can be used for coherent change detection (Simons and Rosen, 2007,
Jung et al., 2016). Several efforts have attempted to use the ∆φscat term to invert for
changes to soil moisture (Zwieback et al., 2017, Zan and Gomba, 2018).
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2.4.1 Visualizing Common Noise Sources

In high signal-to-noise ratio (SNR) interferograms (e.g. large magnitude earth-
quakes such as Massonnet et al. (1993)), one can estimate the deformation magnitude
by simply “counting the fringes”, where the number of 2π cycles is estimated and con-
verted to centimeters through the factor λ/2 (the wavelength is divided in half due
to the two-way radar travel). However, it is more common for an interferogram to
contain many visual features corresponding to noise terms in Equation (2.6). These
noise sources can often be visually identified by InSAR experts, but they can add
considerable difficulty for newer users without background knowledge of the study
area.

To illustrate several common noise sources, Figure 2.8 shows a Sentinel-1 inter-
ferogram of the Big Island of Hawaii from April 20th, 2018 to May 2nd, 2018. This
time period spans the beginning of the 2018 Kilauea eruption, during which a large
subsidence event occurred from subsurface magma flow. However, the diversity in
weather conditions, topography, and vegetation lead to many noise artifacts in most
interferograms of Hawaii. For example, the coastal region in Figure 2.8b contains
dense fringes which could be mistaken as deformation, but in fact is due to turbulent
tropospheric noise. The large elevation changes on Mauna Loa and Mauna Kea in the
center of the island lead to stratified tropospheric noise, which creates a concentric
ring pattern (Figure 2.8c) that is the same shape as a subsidence bowl (see Section
2.4.2). An example of decorrelation noise occurs on the windward side of the island
(Figure 2.8d), which contains many dense tropical rain forests (Figure 2.8e).

Finally, a real deformation feature of ∼ 30 − 40 cm occurred near the Pu’u ’Ō’ō
volcanic cone (Figure 2.8f). In this case, the ground sank down and to the southeast
as magma flowed away from Pu’u ’Ō’ō (Figure 2.8g). One can estimate the magnitude
of subsidence by counting the number of cycles in the zoomed-in region of the inter-
ferogram (Figure 2.8f) and multiplying by λ/2 = 2.8 cm. However, even this analysis
can be difficult due to the high spatial frequency of the fringes, which can cause
aliasing of large deformation events. For the Hawaiian case here, the deformation
magnitude can be verified using nearby permanent GPS stations.
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Figure 2.8: (a) Sentinel-1 interferogram (ascending path 124) from April 20th, 2018
to May 2nd, 2018 over Hawaii, spanning the beginning of the 2018 K’̄ilauea eruption.
Each colored phase cycle of 2π radians indicates a range change of 2.7 cm along
the radar line-of-sight, which can be caused by real surface deformation or a noise
source. (b) The dense fringes near the coast are caused by turbulent tropospheric
noise (see Section 2.4.2). (c) Stratified tropospheric noise on the peak of Mauna Kea,
the tallest peak in Hawaii at 4,207 m, causes a concentric ring pattern. This pattern
is also visible on Mauna Loa in the center of the island, where the phase is strongly
correlated with topographic height. See Section 2.4.2 for further details. (d) An
example of decorrelation noise caused by dense tropical rain forests (e) located on
windward side of the island. (f) Real deformation of ∼ 30 − 40cm around the Pu’u
’Ō’ō volcanic cone to the east of K’̄ilauea. In this case, the ground was subsiding down
and to the southeast as magma flowed away from Pu’u ’Ō’ō. (g) An aerial photo of
Pu’u ’Ō’ō shows the caldera collapse on April, 30th, 2018 after magma migrated
eastward underground (image source: HVO / USGS).
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2.4.2 Tropospheric Noise

The conversion between phase and two-way distance from ground to satellite in
Equation (2.1) assumes that the electromagnetic waves travel though a homogeneous
medium with constant velocity. In reality, they travel through the atmosphere which
has a variable index of refraction n, where n relates to the phase velocity v and speed
of light in a vacuum c by n = c/v (Zebker et al., 1997, Hanssen, 2001, Liu, 2012).
Since n is always real and slightly greater than 1 for Earth’s neutral atmosphere, it is
more common to describe fluctuations using the refractivity N = 106(n− 1), which is
the additional refractive index beyond unity. WritingN asN(x, y, z) to emphasize the
3D variation, we can express the excess delay D caused by the propagation through
the atmosphere as

D = 10−6

∫
s

N(x, y, z)ds (2.8)

where ds is the incremental slant length, and the integration runs along the radar
line of sight. The excess delay adds a phase of φ = −4π

λ
D to a radar image acquired

with the given atmospheric conditions.
The refractivity of the troposphere is commonly decomposed into hydrostatic, wet,

and liquid components (Hanssen, 2001, Bekaert et al., 2015a):

N =

(
k1
P

T

)
hyd

+
(
k
′

2

e

T
+ k3

e

T 2

)
wet

+ (k4W )liquid (2.9)

where P is the total atmospheric pressure in hPa, T is the atmospheric temperature
in Kelvin, e is the partial pressure of water vapor in hPa, and W is the liquid water
content of clouds in g/m3 The coefficients k1, k

′
2, k3 and k4 are constants estimated

from laboratory measurements, commonly taken to be k1 = 77.6 , k′2 = 23.3, k3 =

3.75 · 105, and k4 = 1.45 from Smith and Weintraub (1953) and Solheim et al. (1999).
The hydrostatic delay is on the order of a few meters; however, it varies slowly
laterally and it is often assumed to be vertically stratified (i.e. varying only with
elevation) for study areas roughly 50 × 50 km or less (Doin et al., 2009). The wet
component, caused by variations in water vapor content, is smaller in absolute terms
(∼ 10s of centimeters) but has significant lateral variations at short length scales.
The delay from the liquid component is often negligible (1-2 millimeters or less) but
can be several centimeters in the presence of tall cumulonimbus clouds (Liu, 2012).
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Figure 2.9: (a) Unwrapped interferogram from Figure 2.8c, zoomed in to the top of
Mauna Kea. (b) The SRTM DEM heights for same area as panel (a). (c) Scatterplot
of unwrapped phase (in cm) from panel (a) vs heights from panel (b).

For the purposes of InSAR analysis, noise from tropospheric delay is usually divided
into a stratified component, which correlates with height (Hanssen, 2001, Doin et al.,
2009), and a turbulent component that is random at time scales longer than a day
(Emardson et al., 2003, Onn, 2006).

Previous studies have advanced correction techniques for the stratified component
of tropospheric noise. Several empirical approaches have fit linear or power-law re-
lationships between the unwrapped phase and topographic height of coherent pixels
within interferograms (Elliott et al., 2008, Lauknes, 2011, Bekaert et al., 2015b, Ze-
bker, 2021, Murray et al., 2021). Under the assumption that the deformation does
not correlate with topography, these approaches can be effective and simple to im-
plement. For example, Figure 2.9 shows the portion of the unwrapped interferogram
on top of Mauna Kea from Figure 2.8c. Although the interferogram appears to show
a bowl shape deformation (Figure 2.9a), the phase is actually closely correlated with
the topography (Figure 2.9b-c). Fitting and removing a linear trend from the phase
vs. elevation plot mitigates the stratified atmospheric noise in this case. However,
these approaches can be less effective in regions with multiple weather patterns where
the phase-elevation correlation can vary dramatically in space (Murray et al., 2021).

Many efforts have advanced stratified noise corrections using auxiliary sources
of data, including global atmospheric models (GAMs) (Doin et al., 2009, Jolivet
et al., 2011; 2014, Cao et al., 2021), GPS zenith delay measurements (Onn, 2006, Yu
et al., 2017), and external satellite measurements from sensors such as the Moderate
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Resolution Imaging Spectroradiometer (MODIS) (Li, 2005, Barnhart and Lohman,
2013) or the Medium Resolution Imaging Spectrometer (MERIS) (Ding et al., 2008).
Several authors have attempted to create off-the-shelf correction services or tool-
boxes from these data sources. For example, Yu et al. (2018b) combined information
from GAMs and available GPS zenith delay measurements to create the Generic At-
mospheric Correction Online Service (GACOS) for estimating tropospheric noise in
InSAR data. Maurer et al. (2021) created a library for ray-tracing the LOS paths
through GAM-predicted delays to create correction products. While these correction
methods show promise in certain study areas, the spatial and temporal resolution
can be too low to correct for noise from severe weather or turbulent mixing of water
vapor (e.g. Section 3.3) (Murray et al., 2019). Therefore, methods for mitigating the
turbulent tropospheric noise often analyze many interferograms over time and exploit
the uncorrelated temporal characteristics of the noise.

2.5 InSAR Time Series

Since certain noise sources cannot be distinguished from deformation in a single
interferogram (e.g. Figure 2.8), it is common to analyze multiple interferograms
using InSAR time series techniques (sometimes called “multi-temporal InSAR” or
MT-InSAR). Most multi-temporal methods belong to one of the following categories:
1) stacking (averaging) (Zebker et al., 1997, Sandwell and Price, 1998), 2) small-
baseline approaches (Berardino et al., 2002), or 3) persistent scatterer (PS) methods
(Ferretti et al., 2001, Hooper, 2006). In the past decade, a fourth category of “phase-
linking” approaches have been popularized by the SqueeSAR algorithm (Ferretti et al.,
2011); these are based on optimizations or decompositions of the complex covariance
matrix of SAR image stacks (Guarnieri and Tebaldini, 2008, Fornaro et al., 2015,
Ansari, 2018). Methods (3) and (4) have shown success in extracting high-precision
estimates of interferometric phase where decorrelation is the dominant noise source
(e.g. in local, high-rate deformation, (Tebaldini and Guarnieri, 2010)); in the following
section, we focus on (1) and (2).

For deformation signals which occur as a transient event or with a constant rate,
stacking consists of averaging multiple interferograms (possibly with different weights
for each interferogram) which all contain the deformation signal (Simons and Rosen,
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2007, Zheng, 2019). For example, suppose an earthquake occurred at a known date,
and we have a set of M interferograms which all span this date. For each ground
pixel, we can collect the phase difference measurements into a vector ∆φ ∈ RM . To
estimate the coseismic displacement θ, the simplest stacking solution is

θ =
λ

4π

1

M

M∑
i

∆φi, (2.10)

where ∆φi is ith element of the measurement vector, and the factor λ
4π

converts
the phase from radians to centimeters. For constant-rate ground deformation, one
approach based on (Sandwell and Price, 1998) to calculate the average LOS velocity
vavg of each ground pixel is to compute

vavg =
λ

4π

∑
i ∆φi∑
i ∆ti

(2.11)

where ∆ti is the temporal baseline of the ith interferogram (i.e. the time span tk− tj
for interferogram ∆φj,k).

The Small Baseline Subset (SBAS) approach from Berardino et al. (2002) for-
mulates a linear estimation problem to solve for the phase at each SAR acquisition.
Suppose that the M interferograms are formed from N SAR acquisitions, where
N
2
≤M ≤ N(N−1)

2
, and all interferograms have been unnwrapped and zero-referenced

to a common location. To solve for the LOS phase delay for each SAR acquisition
φ = [φ0, φ1, . . . , φN−1]T , we write the functional model of the linear system as

Aφ = ∆φ+ ε. (2.12)

whereA is the system design matrix, and ε is the vector of interferogram-specific noise
sources (e.g. ∆φdecor,∆φunwrap,∆φscat,∆φn from Equation (2.6)). The matrix A is
an incidence-like matrix where the row corresponding to measurement ∆φj,k , φk−φj
has 1 in the kth column and −1 in the jth column. Since interferograms are relative
measurements, the first date’s phase cannot be constrained and is conventionally
taken to be φ0 = 0. Therefore, we omit the first column of the A matrix containing
−1 entries corresponding to φ0, leaving N−1 remaining terms in the unknown vector
φ = [φ1, . . . , φN−1]T . When A is full column rank, the solution for φ can be obtained
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through least squares, φ = (ATA)−1AT∆φ, equivalent to minimizing the L2 norm
of the residual vector ‖Aφ−∆φ‖2

2.
A common alternative to Equation (2.12) is to solve for the phase velocity between

each SAR acquisition v = [v1, . . . , vN−1]T where vi = (φi−φi−1)/(ti−ti−1). The linear
system is now written as

Bv = ∆φ+ ε, (2.13)

where the row of B corresponding to measurement ∆φj,k has ti− ti−1 in columns i for
j < i ≤ k, and 0 elsewhere. After solving Equation (2.13), v is integrated to obtain
φ.

The rationale behind solving for v is that for early SAR satellites, such as ERS-1
and ERS-2, the acquisitions are often grouped as subsets of images with small spatial
baselines that are separated from other groups by large temporal or spatial baselines.
When ∆φ contains an isolated subset of interferograms, A is not full column rank and
Equation (2.12) is solved with a pseudo-inverse, A†, generated using the singular value
decomposition (SVD) (Strang, 2006). The SVD approach for rank-deficient systems
produces a minimum norm solution vector. The authors of Berardino et al. (2002)
found that minimizing the norm of the velocity vector v produced more physically
plausible deformation results than minimizing the norm of φ. We note that for recent
missions like Sentinel-1 with tightly controlled repeat orbits, it is often possible to
create a single connected network of interferograms, leading to equivalent results from
the formulations of Equations (2.12) and (2.13). However, Equation (2.13) enables
alternative regularization strategies for inversion, as shown in Section 4.1.1.

2.6 InSAR Processing Chain

We developed software for an efficient and scalable InSAR processing chain to pro-
cess geocoded SLC images and output cumulative surface deformation maps (Figure
2.10). An area of interest (AOI) is chosen in latitude and longitude coordinates, and
all overlapping Sentinel-1 SLC products from a specified time frame are downloaded
from the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC).
The 30-meter SRTM DEM is downloaded over the AOI (stitching together tiles for
regions larger than 1 x 1 degree) and upsampled (JPL, 2013) . The DEM, along
with ESA’s precise orbit files, are used by the Stanford processor (Zheng and Zebker,
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Figure 2.10: Processing chain used to create geocoded unwrapped of interfero-
grams for stacking or SBAS time series analysis. Grey boxes indicate intermediate
data products, yellow parallelograms indicate externally developed software packages,
green parallelograms indicate software written for this thesis.

2017, Zebker, 2017) to produce topography corrected, geocoded SLCs (GSLCs). We
note that working with GSLCs simplifies workflows for merging multiple Sentinel-1
frames over large areas (Zheng, 2019). Interferograms are formed from the GSLCs
through a pixel-wise cross multiplication (Equation (2.4)), which are then unwrapped
using the Statistical-cost, Network-flow Algorithm for Phase Unwrapping (SNAPHU)
(Chen and Zebker, 2001). The unwrapped interferograms are referenced and (option-
ally) denoised by removing a planar or quadratic phase ramp. These are finally saved
using the Hierarchical Data Format 5 (HDF5) data format, which allows user-defined
metadata, data chunking, and compression. HDF5 also simplifies and accelerates
parallel implementations of pixel-wise SBAS algorithms (used in Chapter 4 and 5).
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Chapter 3

Permian Basin Background

In this chapter, we review the scientific background of the induced seismicity
problem. We describe the geodetic datasets available to study the problem, and
we present strategies and challenges for processing Sentinel-1 InSAR data over West
Texas. We demonstrate that tropospheric noise is the dominant InSAR noise source.

3.1 Shale Development and Induced Seismicity

Texas has been a leading producer of oil and gas for over a century (Frohlich et al.,
2016a, The Academy of Medicine and of Texas, 2017). It became the nation’s largest
producer of crude oil after the first successful vertical well was drilled south of Beau-
mont, TX in 1901. These “conventional” wells were the primary mode of production
in multiple oil fields across the state. It wasn’t until the early 2000s that advances
in horizontal drilling and hydraulic fracturing (also known as fracking, Figure 3.1)
opened up vast new shale resources which were previously unworkable (Waters et al.,
2006). For example, the Wolfcamp shale in Texas’ Permian Basin is the largest contin-
uous oil field that has ever been discovered in the United States, containing 20 billion
barrels of oil and 16 trillion cubic feet of gas (Gaswirth and Marra, 2016). While areas
of the Wolfcamp shale in the Midland Basin have been traditionally developed using
vertical wells, the ability to extend subsurface drilling horizontally (Figure 3.1b) and
increase production using enhanced oil recovery (EOR, Figure 3.1d) allowed many
new areas to be economically viable for oil and gas production (Figure 3.2).

Despite the economic benefits that the new production technologies provided for
Texas, concerns have been raised about possible environmental consequences of shale
development (The Academy of Medicine and of Texas, 2017, Scanlon et al., 2020). One
concern is the triggering of seismic activity, as it has been recognized that injection
or withdrawal of fluids from the subsurface can induce earthquakes along existing
faults (Ellsworth, 2013, Simpson et al., 1988). Note that induced earthquakes are not
limited to oil and gas operations (Grigoli et al., 2017, Foulger et al., 2018, van der
Baan and Calixto, 2017); they have also been associated with geothermal energy
development (Deichmann and Giardini, 2009), mining operations (Hasegawa et al.,
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(a)

(b)

(c)

(d)

Figure 3.1: Simplified diagrams of oil-field operations. Arrows show the directions
of fluid being injected or withdrawn. Arrow color indicates the contents of the fluid:
black (oil, gas, and wastewater), yellow (oil and gas), and blue (wastewater). (a) In a
hydraulic fracturing operation, fluids are injected at high pressure into a production
well, causing fractures in the surrounding rock that increase permeability. Increased
permeability allows the extraction of oil or gas from a larger region. Following the
hydraulic fracturing of a well, the well goes into production (b). (c) Production wells
extract oil and gas, and as a byproduct, salt water (commonly called “produced water”
or “wastewater”), which is injected to a different subsurface formation at a disposal
well. (d) Enhanced oil recovery (EOR), an alternative to wastewater disposal, involves
injecting the water back into the formation holding the oil and gas to sweep oil and gas
toward the production well. (Figure adapted from (Rubinstein and Mahani, 2015))
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(a) (b)

(c)

Figure 3.2: (a) Aerial view of drilling pads throughout the Permian Basin (b)
Drilling rig set up on one pad (Source: XTO Energy) (c) Water condensate pit used
to store fresh water condensed from natural gas or other flowback fluids (photo source:
Benjamin Lowy)

1989), water impoundment in reservoirs (Talwani, 1997), and CO2 sequestration (Gan
and Frohlich, 2013).

One conceptual model for triggering earthquakes uses the Mohr-Coulomb failure
criterion (Hubbert and Rubey, 1959). The critical shear stress τcritical required to
promote fault slippage can be written as

τcritical = τ0 + µ(σn − P ) (3.1)

where τ0 is the cohesive strength of the sliding surface (often negligible), µ is the
coefficient of friction, σn is the normal stress, P is the pore pressure (Nicholson and
Wesson, 1990, Ellsworth, 2013). Intuitively, increasing the shear stress or decreasing
the normal stress “unclamps” the fault and encourages failure (Shearer, 2019). Since
increasing pore pressure lowers the effective normal stress, fluid injection can move
critically stressed faults to failure and cause earthquakes (Figure 3.3a). Alternatively,
poroelastic effects from injection can change the loading conditions on a fault with-
out a direct hydraulic connection, which can cause fault failure through increased
differential stress (Figure 3.3b).
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Earthquakes are known to be induced by a
wide range of human activities (3–5) that modify
the stress and/or pore pressure (Fig. 3). At present,
with the use of seismological methods, it is not
possible to discriminate between man-made and
natural tectonic earthquakes. Induced earthquakes
sometimes occur at the source of the stress or pres-
sure perturbation; at other times, these events take
place deep below and kilometers away from the
source. When removed from the source, induced
earthquakes typically release stored tectonic stress
on preexisting faults, as do natural earthquakes.
Sometimes induced events occur shortly after the
industrial activity begins, but in other cases they
happen long after it has been under way or even
ceased. Factors that should enhance the probability
of a particular stress or pore-pressure perturbation
inducing earthquakes include the magnitude of
the perturbation, its spatial extent, ambient stress
condition close to the failure condition, and the
presence of faults well oriented for failure in the
tectonic stress field. Hydraulic connection between
the injection zone and faults in the basement may
also favor inducing earthquakes, as the tectonic
shear stress increases with depth in the brittle crust
(2). In addition, the larger the fault, the larger the
magnitude of earthquakes it can host.

Methods for anticipating the time of failure
have long been the “holy grail” of seismology
(22). Though short-term prediction remains an
elusive goal, it has been proposed that critically
loaded faults have enhanced triggering suscep-
tibility to dynamic stresses from distant earth-
quakes (23). Specifically, some but not all of the
sites where fluid-injection–induced earthquakes
are suspected of contributing to the recent in-
crease in seismicity in the midcontinent (Fig. 2)
experienced increased rates of microearthquakes

in the days immediately after three recent great
earthquakes (23).

Earthquakes Induced by Hydraulic Fracturing
The industrial process of hydraulic fracturing
involves the controlled injection of fluid under
pressure to create tensile fractures, thereby in-
creasing the permeability of rock formations. It
has been used for well over half a century to
stimulate the recovery of hydrocarbons. For
many decades, the primary application was to
improve the output of aging oil and gas reser-
voirs. Beginning in the late 1990s, technologies
for extracting natural gas and oil from tight
shale formations led to the development of new
natural gas fields in many parts of the central
and eastern United States, western Canada, and
Europe. Global development of oil and gas from
shale will undoubtedly continue, as the resource
potential is high in many parts of the world.

Extracting hydrocarbons from shale requires
the creation of a network of open fractures con-
nected to the borehole. Horizontal drill holes ex-
tending up to several kilometers within the shale
formation undergo a staged series of hydraulic
fractures, commonly pressurizing a limited section
of the cased well at a time to stimulate the flow
of gas or oil into the well. Each stage involves the
high-pressure injection of water into the formation.
Fracking intentionally induces numerous micro-
earthquakes, the vast majority with Mw < 1.

Several cases have recently been reported in
which earthquakes large enough to be felt but too
small to cause structural damage were associated
directly with fracking. These cases are notable be-
cause of the public concern that they raised, de-
spite maximum magnitudes far too small to cause
structural damage. Investigation of a sequence of

felt events with maximum M 2.9 in south central
Oklahoma revealed a clear temporal correlation
between fracking operations in a nearby well and
the seismic activity (24). Available data were insuf-
ficient to definitely rule out a natural cause due to
the occurrence of some natural seismicity in the
general area. In April and May 2012, a series of
induced earthquakes with maximum M 2.3 oc-
curred near Blackpool, United Kingdom (25),
during fracking to develop a shale gas reservoir.

One of the major shale plays in the United
States—the Marcellus Shale of the Appalachian
Basin in Pennsylvania, West Virginia, Ohio, and
New York—lies within a region characterized
by low levels of natural seismic activity (Fig. 1).
The regional seismographic network operated by
Lamont Doherty Earth Observatory (LDEO) sys-
tematically catalogs all earthquakes with M ≥ 2
in Pennsylvania (Fig. 4). Although thousands of
hydraulic fractures were done in Pennsylvania
since major development of the field began in
2005, only six earthquakes with M ≥ 2 were de-
tected by the LDEO network within the footprint
of the Marcellus Shale, the largest of which was
just M 2.3. The largest earthquake in the region
since the development of shale gas happened
across the Ohio border in Youngstown, where it
was induced by injection (12), much of the fluid
apparently coming from wells in Pennsylvania.

Beginning in 2009, an unusual sequence of
earthquakes was noted in the Horn River Basin of
British Columbia, including 21 events with Mw 3.0
and larger. Only the largest, at Mw 3.6, was reported
as felt by workers in this remote area where it did no
damage (26). The investigation into the cause of these
events by the BC Oil and Gas Commission (26)
concluded that the events “were caused by fluid in-
jection during hydraulic fracturing in proximity of
pre-existing faults.” Two of the hydrofrac treatments
were recorded by dense seismometer deployments
at the surface. Precise hypocentral locations showed
that the induced earthquakes occurred on previously
unknown faults located outside of the stimulation
interval that were well oriented for failure in the am-
bient stress field. Apparently, fracture pressure was
quickly communicated through hydraulically conduc-
tive pathways and induced slip on critically stressed
faults via reduction of the effective normal stress.

Earthquakes Induced by Deep Injection
There has been a growing realization that the prin-
cipal seismic hazard from injection-induced earth-
quakes comes from those associated with disposal of
wastewater into deep strata or basement formations
(5). Before 2011, the Mw 4.8 event on 9 August
1967 near Denver, Colorado, was the largest event
widely accepted in the scientific community as
having been induced by wastewater injection (5).
The hazard landscape of what is possible has shifted
due to the role that wastewater injection into a
depleted oil field may have played in the Mw 5.7
6 November 2011 central Oklahoma earthquake
(16), although a consensus on its origin has not yet
been reached (27). This earthquake damaged homes
and unreinforced masonry buildings in the epicentral
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Fig. 3. Schematic diagram of mechanisms for inducing earthquakes. Earthquakes may be in-
duced by increasing the pore pressure acting on a fault (left) or by changing the shear and normal
stress acting on the fault (right). See (4).

www.sciencemag.org SCIENCE VOL 341 12 JULY 2013 1225942-3

REVIEW

on O
ctober 14, 2019

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

Figure 3.3: Effects of pore pressure perturbations and poroelastic stress changes on
fault failure. Solid curves represent the initial stress state, and dashed curves represent
the perturbed stress state. (a) Increased pore pressure reduces normal stress on the
fault plane, moving the fault closer to the Coulomb failure criterion. (b) Poroelastic
stresses increase differential stress. For both (a) and (b), pore pressure perturbations
and stress changes, as well as the relative magnitude of changes, depend on param-
eters including time, distance, injection rate, diffusivity, and poroelastic parameters.
(Bottom) Schematic diagram for each mechanism causing injection-induced earth-
quakes. (Top from Keranen and Weingarten (2018), bottom from Ellsworth (2013))
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In Texas, earthquakes have occurred in close association with petroleum activities
since 1925, but the rate of earthquakes in the last decade has increased over tenfold
(Frohlich et al., 2016a, Skoumal et al., 2020a). To better understand the causes of
these earthquakes and to assess the likelihood of infrastructure damage, the State
of Texas funded the Texas Seismological Network (TexNet) to record earthquakes
down to M2.0 across the state starting in 2017 (Savvaidis et al., 2019). By that time,
there were over 130,000 active production wells, 23,000 active EOR wells, and nearly
3800 active saltwater disposal (SWD) wells in the Permian Basin (Figure 3.4 (a)).
The volumes of petroleum production (Figure 3.4 (b, c)) and wastewater injection
(Figure 3.4 (e, f)) have been rising in many locations; however, the recently cataloged
earthquakes are spatially clustered (Figure 3.4 (c)). One significant cluster is near
Pecos, TX in the Delaware Basin, which experienced over 2000 earthquakes in 2017
(Frohlich et al., 2019).

Several studies have used spatio-temporal analyses to link certain instances of
wastewater injection and hydraulic fracturing to earthquakes (Savvaidis et al., 2020,
Skoumal et al., 2020a, Grigoratos et al., 2020), but attributing causation of earth-
quakes to individual wells and discriminating induced from natural seismicity is ex-
tremely challenging (Grigoli et al., 2017, Dahm et al., 2012, Verdon et al., 2019,
Frohlich et al., 2016a;b). Understanding the causes of earthquakes and how they are
linked to certain production and disposal requires extensive knowledge of the subsur-
face. Subsurface measurements of pore pressure changes can be difficult or impossible
to collect at a regional scale, but measurements of surface deformation derived from
geodetic data have been a valuable tool in estimating the distribution of fault slip at
depth and inferring associated seismic risk (Segall, 2010, Huang et al., 2017).

3.2 Available Geodetic Data

The coverage of GPS permanent stations in West Texas is sparse, and there are no
stations in the Delaware Basin (Figure 3.5). At 14 stations in the Midland Basin and
the Central Basin Platform, daily east, north, and up (ENU) surface deformation
measurements were processed by the Nevada Geodetic Laboratory (Blewitt et al.,
2018). After removing the regional tectonic motion, little motion (0-3 mm/year)
was observed at all GPS stations over the study period (Figure 3.6). Because energy-
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Figure 3.4: Shale development and seismicity in the Permian Basin through 2018.
(a) Locations of oil production, EOR, and saltwater disposal (SWD) wells active in
2017. (b) Annual oil production volume on a 10-mile grid in 2017. (c) Permian Basin
oil production rate as reported by the Texas Railroad Commission. (d) Locations
of earthquake hypocenters detected by TexNet in 2017. The color and size of a
circle indicates the estimated earthquake depth and magnitude. (e) Annual injection
volume (including both SWD and EOR wells) on a 5-mile grid. (f) Permian region
injection rate (including both SWD and EOR wells) as reported by the Texas Railroad
Commission.

related injection and extraction activities often occur within deep and rigid subsurface
formations, it has been common to assume little deformation can be detected at
Earth’s surface.

InSAR surface deformation measurements have much broader spatial coverage,
and they provide a key observable to fill the gaps left by GPS. They allow us to
estimate locations of pressure build up from fluid injection, barriers to subsurface fluid
flow, and unmapped faults. However, creating accurate maps of surface deformation
using InSAR can be challenging at the scale of the full Permian Basin.
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descending path 85 paths of Sentinel 1 InSAR coverage, respectively.
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Figure 3.6: Example measurements of east, north, and vertical components of sur-
face deformation from the permanent GPS station TXMC (Figure 3.5). All stations
indicated in Figure 3.5 show similarly small deformation during the 2015-2019 period.
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3.3 InSAR Processing Strategy and Noise Assessment

Using a geocoded SLC processor (Zheng and Zebker, 2017, Zebker, 2017) (Section
2.6), we processed 91 ascending (path 78, frames 94-104) and 82 descending (path
85, frames 483-493) Sentinel-1 scenes acquired between Nov. 2014 and Jan. 2019
(Figure 3.5). We generated more than 7000 interferograms with 120 meter pixel
spacing and a maximum temporal baseline of 800 days. No spatial baseline threshold
was imposed in the interferogram formation. Because few decorrelation artifacts
were present, we were able to unwrap all interferograms without additional spatial
filtering using the Statistical-cost, Network-flow Algorithm for Phase Unwrapping
(SNAPHU) (Chen and Zebker, 2001). We removed long-wavelength phase ramps due
tropospheric noise using a planar phase model. We chose the GPS station TXKM as
the reference point for both ascending and descending InSAR data, and we used the
remaining 13 stations as controls to assess InSAR measurement uncertainty (Chapter
4). Comparable interferograms can be generated using other processors such as the
InSAR Scientific Computing Environment (ISCE) (Rosen et al., 2012) or GMTSAR
(Sandwell et al., 2011).

Interferograms may contain noise from many possible sources (Section 2.4). In
our West Texas data, ∆φorb was negligible, and interferograms containing significant
decorrelation, ∆φdecor, or unwrapping artifacts, ∆φunwrap, were removed. Because
the Permian Basin is located in the middle latitudes and is relatively flat, ∆φiono

and ∆φdem are not substantial (Fattahi and Amelung, 2013, Liang et al., 2019).
Tropospheric noise ∆φtropo consists of a stratified component that correlates with
topography (Doin et al., 2009) and a turbulent component that is random at time
scales longer than one day (Emardson et al., 2003) (Section 2.4.2). Since the majority
of the oil-producing Permian Basin is flat (less than 700 meters of elevation change),
there is not a substantial stratified component of tropospheric noise in our data. The
dominant noise source in the West Texas Sentinel-1 data is turbulent tropospheric
noise.

We analyzed the effectiveness of tropospheric correction techniques based on
auxiliary data using the Generic Atmospheric Correction Online Service (GACOS,
(Yu et al., 2018a;b)), which derives its corrections using the High Resolution Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) weather model (0.125-
degree, 6-hour resolutions) and the GNSS-derived zenith delay maps from the Nevada
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Figure 3.7: (a) Unwrapped interferogram from Jan. 5, 2018 to May 29, 2018. Blue
indicates an increase in relative LOS delay. (b) Tropospheric correction predicted from
delays computed by GACOS. (c) Corrected interferogram (panel (b) - panel (c)) (d)
Unwrapped LOS measurements (in cm) of the 20180105-20180529 interferogram vs.
the Digital Elevation Model (DEM) heights.

Geodetic Laboratory. Note that for the West Texas region, GACOS mostly relies on
the weather model input due to the sparsity of GPS stations.

We illustrate several correction attempts for Sentinel-1 interferograms over West
Texas using GACOS tropospheric corrections. In Figure 3.7, an ascending (Path 78)
interferogram from Jan. 5, 2018 to May 29, 2018 contains a mass of dry air moving in
from the New Mexico mountains, which creates a ∼ 20 cm decrease in LOS delay in
half of the interferogram (Figure 3.7a, red). Here the ECMWF weather model used
by GACOS predicts the some of the delay change between the dates (Figure 3.7b).
The root mean square (RMS) noise drops from 8.8 cm in the original interferogram to
5.7 cm after the GACOS correction (Figure 3.7c), despite the interferogram showing
no discernible phase vs. elevation trend (Figure 3.7d).

In other examples, the GACOS corrections provided little benefit, and occasionally
added noise to the interferogram. For example, Figure 3.8a shows a descending Path
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Figure 3.8: (a) Descending Path 85 unwrapped interferogram from June 8, 2015
to July. 2, 2015. Blue indicates an increase in relative LOS delay (b) Tropospheric
correction predicted from delays computed by GACOS. (c) Corrected interferogram
(panel (a) - panel (b)) (d) Unwrapped LOS measurements (in cm) of the 20150608-
20150702 interferogram vs. the Digital Elevation Model (DEM) heights.

85 interferogram from June 8, 2015 to July 2, 2015. The GACOS correction is not
correlated with the interferogram noise structure (Figure 3.8b), and the RMS noise
in the corrected interferogram (Figure 3.8c) increased from 2.6 cm to 2.9 cm.

Thunderstorms commonly add 10-15 cm of turbulent tropospheric noise to inter-
ferograms with a summer SAR acquisition (Figure 3.9). During summer months, the
weather conditions at the SAR acquisition time are visible in optical images taken by
the Geostationary Operational Environmental Satellites (GOES) (Figure 3.9a). For
example, tall cumulonimbus clouds covered much of West Texas on July 23, 2019
at the time of the Sentinel-1 acquisition (Figure 3.9a), which created patches of ex-
cess delay of > 10 cm in the interferogram from Jan. 12 to July 23, 2019 (Figure
3.9b). The different imaging geometries of the Sentinel-1 satellites (side-looking, in
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Figure 3.9: (a) Weather conditions visible from the GOES satellite on July 23rd,
2019 at the same time as the Sentinel-1 acquisition (b) Unwrapped interferogram from
Jan. 12, 2019 to July 23, 2019. Blue indicates an increase in relative LOS delay (c)
Tropospheric correction predicted from delays computed by GACOS. (d) Corrected
interferogram (panel (b) - panel (c))

low Earth orbit) and the GOES satellites (nadir-looking, geostationary orbit) mean
that the pixels of Figure 3.9a and Figure 3.9b do not fully align, but cover approxi-
mately the same area. The ∼ 5 km storm cells are not predicted by GACOS due to
the relatively coarse spatial and temporal resolution of global weather models (Fig-
ure 3.9c). Thus, the corrected interferogram still contains most of the turbulent noise
from the storm (Figure 3.9d).

We also created line-of-sight delay estimates from weather models using the Ray-
tracing Atmospheric Delay Estimation for Radar (RAiDER) library of Maurer et al.
(2021). RAiDER generates a troposphere correction product by integrating the
model-predicted delay along the radar LOS path for each InSAR pixel. We com-
pared several weather model corrections to the ECMWF used by GACOS and found
only small differences in the results. For example, the RMS noise of the interfero-
gram in Figure 3.7 decreases an additional 0.8 cm by using NASA’s Global Modeling
and Assimilation Office (GMAO) reanalysis weather model, despite have 5x coarser
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spatial resolution than the ECMWF. However, no model that we tested successfully
generated corrections for Figure 3.9.

Since the turbulent tropospheric noise is difficult to predict and correct using
the auxiliary correction methods, Chapters 4 and 5 present data-driven mitigation
strategies for producing robust estimates of surface deformation.
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Chapter 4

Cumulative Surface Deformation Solutions with Automated

Outlier Removal

Previous InSAR studies have demonstrated the utility of surface deformation data
for understanding causes of induced seismicity; however, these studies focused on
study areas ∼ 60-by-60 km or smaller. Since InSAR tropospheric noise variance
increases with the distance away from the reference point, it is difficult to expand
the InSAR spatial coverage to the entire Permian Basin while retaining millimeter
level accuracy. In this chapter, we present a time series method for creating large
cumulative surface deformation maps over areas containing severe tropospheric noise.
We developed an outlier detection algorithm that removes InSAR measurements cor-
rupted by severe tropospheric noise (e.g. storms and heat waves). The method
reduces the uncertainty in our linear deformation estimates by a factor of 2, down
to 1-3 mm/year across the basin. Our results were validated by independent GPS
measurements recorded at 13 permanent ground stations. We use the method to
create yearly deformation maps from November 2014 through January 2019 over the
oil-producing region of the Permian Basin, which are available through the Center
for Integrated Seismicity Research (CISR) for the broader scientific community.

4.1 Algorithms

4.1.1 Stacking and InSAR Time Series Analysis

To investigate how InSAR measurement noise influences the line-of-sight (LOS)
deformation solutions, we compared the results derived from (1) the stacking method,
(2) an SBAS linear deformation (constant velocity) model with L1 and L2-norm
penalty functions, and (3) unregularized and regularized SBAS deformation time
series. We assume there are M small-baseline interferograms that were generated
from N SAR scenes acquired over a period of interest. We employed a stacking
approach (Sandwell and Price, 1998) to calculate the average LOS velocity vavg of
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each ground pixel over a time period of interest T as:

vavg =
λ

4π

∑
i∈G ∆φi∑
i∈G ∆ti

(4.1)

where G is a subset of interferograms that were formed using two SAR scenes acquired
within the time period T . The LOS measurement (in radians) and the temporal
baseline of the ith interferogram in G are written as ∆φi and ∆ti respectively, and
the factor 4π

λ
converts radians to centimeters.

Similarly, the SBAS method outlined in Section 2.5 can be augmented with a
linear deformation model. In this formulation, we solve for the average velocity vavg
over this period at each pixel of interest as (Berardino et al., 2002):

vavg =
λ

4π
· arg min

vavg
‖BP vavg −∆φ‖p (4.2)

where B is the M × (N − 1) SBAS matrix, P is an (N − 1)× 1 vector of ones, ∆φ is
the M × 1 vector of LOS measurements at this pixel, and p ∈ {1, 2} is the norm used
to penalize the data misfit. The L2 linear deformation solution is comparable to the
stacking solution (with an assumption of a constant velocity), and the L1 solution is
typically less sensitive to measurement outliers than the L2 solution.

The full vector of LOS surface velocities between adjacent SAR acquisitions v =

[v1, . . . , vN−1]T can be solved as:

v =
λ

4π
· arg min

v
‖Bv −∆φ‖2

2 + α ‖Dv‖2
2 (4.3)

where D is a (N − 2)× (N − 1) matrix, with 1 on the main diagonal and −1 on the
superdiagonal, which approximates the first-order differentiation operator. The first
term penalizes the data misfit, the second term is a temporal smoothness constraint,
and α ∈ R is the weight between the two terms. When α = 0, the solution is the
unregularized SBAS deformation time series. An additional integration of v over time
yields the LOS deformation time series.
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4.1.2 Tropospheric Noise Outlier Removal

We examined interferograms at the 13 control locations and discovered that non-
Gaussian tails (outliers) are present. For example, LOS measurements of the ascend-
ing interferograms at pixels near the GPS station TXMC show a near zero median
(-4 mm) and a standard deviation of 3.2 cm (Figure 4.1 (a)). Due to the absence
of substantial deformation signal at this station, the standard deviation of the LOS
distribution is a measure of turbulent tropospheric noise. We found that the median
LOS turbulent error is close to zero (no systematic noise bias) at all GPS control sta-
tions. The standard deviation of the turbulent noise increases as the square root of
the distance from the InSAR reference point (Figure 4.1 (b)). Furthermore, we com-
pared the LOS turbulent noise distribution observed at each GPS station to a normal
distribution using a normal probability plot (Filliben, 1975) (e.g. Figure 4.1(c)). The
probability plot illustrates the deviation of a set of samples from a normal distribu-
tion, which in our case occurs at the tails due to occasional severe tropospheric noise
events (e.g. storms or heat waves).

Because severe tropospheric noise may only impact a portion of a SAR image, we
identified InSAR measurement outliers at each pixel independently as follows. Given
N SAR acquisitions, there are up to N − 1 InSAR LOS measurements at a pixel of
interest that contain the common tropospheric noise of the kth SAR scene. We defined
uk,n as the nth such LOS measurement, and ūk as the mean absolute measurement:

ūk =
1

N − 1

N−1∑
n=1

|uk,n| (4.4)

We labeled uk,n (for all n) as outlier measurements if ūk > median(ū)+4σMAD, where
ū = [ū1, ..., ūN ], and σMAD = 1.483 ·MAD(ū). Here we employed a robust statistics
measure, the median absolute deviation (MAD), for estimating the spread of data
samples in the presence of outliers (Hampel, 1974, Rousseeuw and Hubert, 2011).
Given a vector x that contains M data samples, MAD(x) is defined as:

MAD(x) = median
m=1,...M

(∣∣xm −median(x)
∣∣) (4.5)

where xm is the mth data sample.
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Figure 4.1: (a) LOS measurements (in cm) of all ascending interferograms at the
GPS station TXMC. The distribution has a near zero median (-4 mm) and a standard
deviation of 3.2 cm. Due to the absence of substantial deformation signals, the
standard deviation of the distribution is a measure of LOS turbulent tropospheric
noise. (b) The standard deviation of random tropospheric turbulent noise at 13
control locations (blue dots), which increases as the square root of the distance from
the InSAR reference point (blue line). (c) A comparison between the tropospheric
noise distribution at TXMC with a normal distribution. Dashed line connects the
1st and 3rd quartiles of the data. Troposphere noise following a normal distribution
would match the dashed line, but the noise distribution has larger tails.
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4.1.3 Line-of-sight Decomposition

An interferogram measures surface deformation between the two SAR acquisition
times along the radar LOS direction. The LOS deformation, uLOS, can be written as:

uLOS = αeue + αnun + αuuu (4.6)

where ue, un and uu are the east, north and up displacements, respectively. The radar
look vector α = [αe, αn, αu] can be calculated from the known imaging geometry at
every pixel location. This varies significantly for Sentinel-1 due to the ∼250 km wide
swath (Figure 4.2).

In regions where InSAR data are available from two LOS directions, we can de-
compose the ground motion into its eastward and vertical components. To perform
the decomposition, we first write uasc and udesc in terms of ue, un and uu:

uasc = αa,eue + αa,nun + αa,uuu (4.7)

udesc = αd,eue + αd,nun + αd,uuu (4.8)

We can express ue and uu as:

ue ≈
1

β
[αd,uuasc − αa,uudesc] (4.9)

uu ≈
1

β
[αa,eudesc − αd,euasc] (4.10)

where β = αa,eαd,u − αd,eαa,u. Because Sentinel-1 satellites are operating in a near-
polar orbit, the north look coefficients αa,n and αd,n are both relatively small. Ignoring
1 cm northward motion in un only leads to ∼ 0.1-0.2 mm error in ue and ∼ 1 mm
error in uu at most locations.

4.2 Time Series Comparisons and Outlier Removal

Here we used the Sentinel-1 interferograms from Path 78 and Path 85 processed
in Section 3.3. We solved for the cumulative LOS deformation using each time series
method from Section 4.1.1 over three periods of interest: Nov. 2014 to Jan. 2017,
Nov. 2014 to Jan. 2018, and Nov. 2014 to Jan. 2019. For the time series methods
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Figure 4.2: East, north, and vertical coefficient of the LOS unit vector of all Sentinel-1
Path 78 and Path 85 pixels. Positive LOS direction points away from the satellite to
the ground.
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Figure 4.3: Comparisons of InSAR unregularized SBAS time series (purple), regular-
ized SBAS time series (green), linear deformation trend estimated by minimizing the
L1-norm of the residuals (blue), and the L2-norm of the residuals/ stacking approach
(red) (a) before and (b) after removing LOS measurement outliers. ENU GPS data
from station TXSO has been projected onto the radar LOS (orange dots).

that calculate an average velocity vavg,j over the jth time period Tj , we computed
the cumulative LOS surface deformation as the product vavg,j · Tj.

To compare the time series methods, we projected the 13 GPS ENU time series
onto the radar LOS. We computed the average GPS LOS velocity using a linear
regression and took this as ground truth. We found that InSAR tropospheric noise
has a strong influence on all the surface deformation solutions before removing the
measurement outliers. As an example, Figure 4.3 (a) shows the ascending Path 78
LOS solutions between Nov. 2014 and Jan. 2018 at the GPS station TXSO before
removing InSAR measurement outliers. The random tropospheric noise creates up
to ∼6 cm of error in the unregularized SBAS surface deformation time series. This
error can be reduced by increasing α in Equation (4.3). As α increases, the LOS
deformation time series converge to the L2 linear deformation (constant velocity)
solution.

After removing InSAR outlier measurements associated with local weather events,
all SBAS time series methods produce more accurate and consistent deformation
trends (Figure 4.3 (b)). The unregularized SBAS time series still contains up to ∼3
cm of tropospheric noise, leading to long-wavelength artifacts in the basin-wide defor-
mation maps. The L1 and L2 linear deformation solutions show close agreement (< 2
mm difference) at all GPS stations. Table 4.1 summarizes the differences before and
after removing outliers for the four methods using the root mean square (RMS) and
the worst-case absolute differences between InSAR and the 13 GPS average velocities.
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Table 4.1: Errors (in mm) in four SBAS ascending LOS deformation (Nov. 2014 -
Jan. 2018) solutions

Before the outlier removal After the outlier removal
(RMS / Worst) (RMS / Worst)

Unregularized 22 / 99 14 / 43
Regularized 14 / 63 10 / 27

L1 linear deformation 7 / 11 4 / 8
L2 linear deformation 10 / 22 4 / 8
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Figure 4.4: Cumulative ascending LOS deformation solutions (Nov. 2014 - Jan.
2018) (a) before and (b) after excluding InSAR outlier measurements. Note that
1.1 cm cumulative error over 3 years is equivalent to 3.5 mm/year RMS error in the
velocity estimate.

Since both linear methods suggest a deformation trend consistent with the stacking
approach, we chose the simple stacking method as the final processing strategy.

We see a striking visual difference in the Path 78 cumulative deformation map
from Nov. 2014 to Jan. 2018 after removing tropospheric outliers (Figure 4.4).
There are cm-level tropospheric artifacts in the deformation solution that uses all
noisy measurements (Figure 4.4(a)). These long wavelength artifacts (e.g. the red
streak near Midland) do not match the GPS stations measurements. However, the
artifacts were mitigated using the pixel-wise outlier removal algorithm (Figure 4.4
(b)).

Table 4.2 shows the RMS and the worst-case absolute differences between the
ascending Path 78 InSAR and GPS inferred average LOS velocities for all three study
periods. For each time period, our outlier removal algorithm reduced the uncertainty
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Table 4.2: InSAR ascending Path 78 LOS velocity estimation errors (in mm/year)
using the stacking method

Before the outlier removal After the outlier removal
(RMS / Worst) (RMS / Worst)

Nov. 2014 - Jan. 2017 3.8 / 9.5 1.9 / 5.9
Nov. 2014 - Jan. 2018 3.3 / 7.1 1.3 / 2.5
Nov. 2014 - Jan. 2019 2.0 / 6.1 1.1 / 2.5

Table 4.3: InSAR descending Path 85 LOS velocity estimation errors (in mm/year)
using the stacking method

Before the outlier removal After the outlier removal
(RMS / Worst) (RMS / Worst)

Nov. 2014 - Jan. 2017 7.8 / 13.8 2.9 / 5.0
Nov. 2014 - Jan. 2018 3.7 / 7.5 2.7 / 5.6
Nov. 2014 - Jan. 2019 1.6 / 2.8 0.8 / 1.6

in the InSAR stacking solution by a factor of ∼2, down to 1-3 mm/year RMS across
the basin. Similarly, Table 4.3 shows the uncertainty in the Path 85 descending
stacking solutions using the 5 permanent GPS stations available in the SAR footprint.
We also see reduction in noise by a factor of ∼2 for Path 85. Note that for a given
period of interest Tj, the LOS velocity error Evel,j propagates into the cumulative
deformation error Ec,j as Ec,j = Evel,j · Tj.

4.3 Surface Deformation in the Permian Basin

The Sentinel-1 cumulative LOS deformation solutions reveal numerous surface
deformation features over the oil-producing region in the Permian Basin (Figure 4.5).
From the ascending geometry, we observed no substantial deformation in the Central
Basin Platform, where oil and gas are mostly produced from conventional reservoirs.
In the Midland and Delaware Basins, we observed an accelerating surface deformation
rate between Nov. 2014 and Jan. 2019, which coincides with the sharp rise of oil
production from unconventional reservoirs in 2017 and 2018. For example, a 30 km2

area northwest of Pecos shows approximately 0.5 cm cumulative LOS deformation
between Nov. 2014 and Jan. 2017, 1.5 cm between Nov. 2014 and Jan. 2018, and
over 5.5 cm from Nov. 2014 to Jan. 2019. The greatest number of observable signals
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Figure 4.5: Cumulative LOS deformation (Nov. 2014 - Jan.2017; Nov. 2014 -
Jan.2018; Nov. 2014 - Jan. 2019) as inferred from Sentinel-1 (a) ascending Path
78, and (b) descending Path 85 data over an 80,000 square km oil-producing region
of the Permian Basin. Here a subsidence or eastward deformation signal leads to a
positive LOS measurement in the ascending geometry, and a subsidence or westward
deformation signal leads to a positive LOS measurement in the descending geometry.
Areas with >1200 m altitude are masked due to the low oil production activity in
mountainous regions.

are present in 2018 when peak production occurred in the region. Similarly, from
the descending geometry, we find no substantial deformation in the Central Basin
Platform and an increasing rate of surface deformation in the Delaware Basin.

We also solved for the vertical and eastward deformation in the region where Path
78 and 85 overlap (see Section 4.1.3) using the LOS unit vector at each pixel location
(Figure 4.2). To illustrate the decomposition, Figure 4.6 shows a 12 km x 12 km region
centered on a wastewater injection well found by Kim and Lu (2018) to have injection-
related uplift. We observe similar magnitude deformation toward the satellite in
both ascending and descending tracks (Figure 4.6 top). After decomposing the two
geometries, we calculated ∼ 5.5 cm of uplift and ∼1.2 cm of east-west motion between
November 2014 and April 2017 (Figure 4.6 bottom), similar to the magnitudes found
in Kim and Lu (2018).
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Figure 4.6: (top) Ascending and descending line-of-sight cumulative deformation
between November 2014 and April 2017. Red indicates motion toward each satellite.
(bottom) Cumulative vertical and horizontal surface deformation due to wastewater
injection in Winkler County, TX. The horizontal motion here is ∼ 20% of the vertical
motion, with up to ∼ 5.5 cm of uplift and ∼ 1.2 cm of east-west motion. This localized
deformation feature was originally reported in Kim and Lu (2018).
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In the northern Delaware Basin, where large volumes of oil production and wastew-
ater disposal occurred, the ascending and descending LOS deformation patterns are
similar. This means that the observed deformation in this region is primarily vertical
(Figure 4.7 (b) and (e)). The observed subsidence or uplift features between Nov.
2014 and Jan. 2019 are ∼ 1-4 cm. In the southern Delaware Basin, Deng et al. (2020)
solved for the cumulative LOS surface deformation between Nov. 2014 and Feb. 2019
(∼ 100 km by 60 km) using the ascending Sentinel-1 data (Path 78 frames 99-100). In
this study, we found that the observed magnitudes of the ascending and descending
LOS deformation are different (Figure 4.5), which suggests that both horizontal and
vertical deformation occurred in this region. Previous studies near Mesquite, Nevada
have shown that confined aquifer pumping in the presence of faults can produce
complex asymmetrical deformation patterns with a non-trivial horizontal component
(Burbey, 2008). In the Pecos area, the largest subsidence patterns (∼ 13 cm over 4
years) occurred ∼ 15 km south of Pecos, and the largest eastward motion (∼ 3-4 cm
over 4 years) occurred near the town of Pecos along a line transect (Figure 4.7 (c)
and (f)). The observed linear deformation patterns align with the inferred favorable
fault plane orientation proposed by Lund Snee and Zoback (2018) (a strike angle of ∼
300 degrees, lining up with the measured SHmax direction), and they also align with
a cluster of recent shallow earthquakes (< 3 km depth) cataloged by TexNet.
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Figure 4.7: (a) Cumulative vertical deformation between Nov. 2014 and Jan. 2019
over the region where Sentinel-1 Path 78 and Path 85 overlap. A zoomed-in view of
Box A in the northern Delaware Basin and Box B in the southern Delaware Basin
are shown in panel (b) and (c) respectively. (d) Cumulative eastward deformation
between Nov. 2014 and Jan. 2019 over the region where Sentinel-1 Path 78 and Path
85 overlap. A zoomed-in view of Box A in the northern Delaware Basin and Box B
in the southern Delaware Basin are shown in panel (e) and (f) respectively. In the
southern Delaware Basin, the observed vertical and eastward deformation (panel (c)
and (f)) show linear patterns along with earthquake hypocenters (gray dots) detected
by TexNet in 2018.
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4.4 Implications for Geomechanical Modeling

Based on fault plane solutions derived from recent seismic activity and the fault-
ing stress regime interpretations (Lund Snee and Zoback, 2018), the Pecos area is in
a normal faulting regime. We employed an elastic dislocation model (Okada, 1992)
to demonstrate that the presence of dip-slip normal faults can produce the observed
linear subsidence patterns in this area (Figure 4.8 (a)). We solved for the dip angle,
depth, width along the dip direction, and slip magnitude of four normal faults by
best fitting the forward model to InSAR vertical deformation observations, minimiz-
ing the sum of squared residuals, and maximizing the R-squared values (Du et al.,
1992) (Appendix A.1). The optimal solution suggests that the depth of the faults
ranges from 0.9 km to 1.5 km, which is shallower than most of the TexNet recorded
earthquakes (2-6 km in depth). Possible explanations for this discrepancy include:
(1) the existence of aseismic fault slippage being responsible for the observed surface
deformation (McGarr and Barbour, 2017); (2) bias in earthquake depth estimation in
the TexNet catalog (Lomax and Savvaidis, 2019); (3) systematic modeling errors as-
sociated with representing a mechanically layered earth as a homogeneous half space
(Du et al., 1992).

After removing the best-fit deformation associated with dip-slip faulting (Figure
4.8 (b)), there is still∼ 2 cm residual subsidence in the Pecos area (e.g. Figure 4.8 (f)).
Given that shallow groundwater production was minimal in this region for the time
period of interest (Deng et al., 2020), we introduced an elastic reservoir compaction
model (Geertsma et al., 1973) to our geomechanical analysis (Appendix A.2). We
implemented two layers of multiple cylindrical reservoirs corresponding to reported
locations and depths of well clusters in the Delaware Mountain Group (DMG) and
Wolfcamp reservoirs, which account for most of the recent oil and gas production
in the region. We discretized the DMG layer based on a cluster of production wells
predominantly perforated over a depth range of 1.5-1.8 km. The Wolfcamp wells
are completed over a depth range of 3-3.6 km. We employed an objective function
inversion method to solve for the reservoir pressure depletion pattern that best fit the
InSAR-observed subsidence (Figure 4.8 (c)) (Du and Olson, 2001).

An important conclusion of this study is that both fault slip and reservoir infla-
tion or compaction can produce observable surface deformation over an 80,000 square
kilometer oil-producing region of the Permian Basin. The InSAR-observed subsi-
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Figure 4.8: (a) InSAR-observed cumulative vertical deformation between Nov. 2014
and Jan. 2019 in the Pecos, TX area. (b) Modeled vertical deformation associated
with four dip-slip faults. (c) Modeled vertical deformation associated with reser-
voir compaction. (d) Modeled total vertical deformation associated with four dip-
slip faults and reservoir compaction (panel (b) + panel (c)). (e) Difference between
InSAR-observed and model-predicted vertical deformation (panel (a)− panel (d)). (f)
Difference between InSAR-observed and model-predicted vertical deformation along
the B-B’ transect.
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dence patterns over the Pecos area can be modeled as slip over multiple faults and
discretized cylindrical reservoir compaction (Figure 4.8 (d)-(f)). We note that InSAR
subsidence data alone can constrain all pertinent fault and reservoir parameters in
our normal faulting and reservoir compaction models. The InSAR observed cumula-
tive surface deformation patterns, which show larger horizontal component than the
model prediction, suggest that other factors, such as strike-slip faulting and hetero-
geneity in subsurface properties, may play a role. There have been extensive studies
on how reservoir compaction and inflation as well as fault slippage alter stress fields in
the subsurface and produce surface deformation (Geertsma et al., 1973, Segall, 1992,
Okada, 1992, Du et al., 1992, Vasco and Ferretti, 2005, Vasco et al., 2008, Khakim
et al., 2012). InSAR surface deformation can be combined with this knowledge to
evaluate fluid recovery efficiency and monitor disposal wells at low cost. Further-
more, these high-quality geodetic measurements are readily available to complement
the TexNet seismic catalog for assessing the likelihood of fault motion and induced
earthquake risks in Texas.
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Chapter 5

Robust Time Series Methods for Estimating Non-Linear

Deformation

In this chapter, we present a method for robustly extracting slowly-varying surface
deformation. We perform a temporal smoothing using the robust Locally Weighted
Scatterplot Smoothing (LOWESS) technique (Cleveland, 1979) on noisy surface de-
formation time series derived using SBAS. The LOWESS smoothing technique easily
accounts for nonlinear deformation while also suppressing the strong summer tropo-
spheric noise. We demonstrate the technique on both synthetic data and on three
paths of Sentinel-1 data over the Permian Basin. The cumulative results show sub-
tle basin-wide uplift features arising after 4-5 years of heavy sustained wastewater
injection.

5.1 Algorithm

Consider a time series ofN LOS phase delays for a single pixel, φ = [φ0, φ1, . . . , φN−1]T

sampled at time intervals t = [t0, . . . , tN−1]T , solved from the SBAS linear system
(Equation (2.12)). We can write each element φi as a sum of surface deformation and
atmospheric delay,

φi =
4π

λ
(di + αi) (5.1)

where di and αi are the surface deformation and atmospheric delay on the ith day,
and λ is the radar wavelength. Here we consider the case that the interferogram-
specific noise sources (e.g. ∆φdecor,∆φunwrap,∆φscat) have been properly accounted
for in the inversion process so that the remaining noise in φ is predominantly from
the atmospheric delay α = [α0, . . . , αN−1]T . Our goal is to separate the vector of
surface deformation d = [d0, d1, . . . , dN−1]T from the atmospheric noise α.

The most widely used non-parametric methods for separating d from α rely on
the fact that the turbulent component of α is uncorrelated in time, while most de-
formation sources show strong temporal correlation. For example, the authors of
Ferretti et al. (2000) and Berardino et al. (2002) estimated α by performing a high-
pass temporal filter on each pixel followed by spatially low pass filtering the residual
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Figure 5.1: LOWESS tricube weighting function w(ti) for an inclusion fraction of
γ = 1/6 (blue), γ = 1/3 (orange), and γ = 1/2 (green).

phase. The temporal high pass filter was implemented by subtracting a low-pass
filtered version of φ (using a triangular filter in Ferretti et al. (2000)) from the orig-
inal unfiltered version. One difficulty with the triangular filter and linear methods
enforcing temporal smoothness is that the filter coefficients are non-adaptive; noisier
atmospheric conditions will be weighted the same as calmer conditions (Liu, 2012).
This can cause considerable leakage of noise from severe weather conditions into the
deformation estimate of adjacent days (e.g. the regularized solution shown in Figure
4.3a).

We can adaptively filter the noisy φ time series by implementing a robust LOWESS
regression (Cleveland, 1979). The LOWESS algorithm fits a local linear regression at
every ti using nearby data points, repeating over multiple iterations to refine the fit
and reduce the effect of outliers (Efron and Hastie, 2019). For the first iteration, at
each time ti, we calculate a set of weights w(ti). The weight function has a maximum
value of 1 at ti and decays to zero at the rth nearest neighbor to ti, where r = bγNc,
0 < γ ≤ 1 is the fraction of the data chosen to include for each local fit, and bxc
is rounds x down to the next lowest integer. Let hi be the rth smallest number of
|ti − tk| for k = 0, . . . , N − 1. The kth weight wk(ti) is defined as

wk(ti) =


(

1−
∣∣∣ ti−tkhi

∣∣∣3)3

, if
∣∣∣ ti−tkhi

∣∣∣ < 1

0, otherwise
(5.2)
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for k = 0, . . . , N−1. This weight function is known as the tricube weighting function.
Figure 5.1 illustrates the shape of w(ti) for γ = 1/6, 1/3 and 1/2.

Using w(ti), we compute a weighted linear regression around ti by finding the
intercept, ai, and slope, bi, that minimize

N−1∑
k=0

wk(ti) (φk − ai − bitk)2 . (5.3)

The smoothed estimate φ̂i at the point ti is calculated as φ̂i = ai + tibi. This process
is repeated for all ti, i = 0, . . . , N − 1.

The second iteration performs another weighted least squares fit, this time further
downweighting based on the residuals of the first iteration. Let εk =

∣∣∣φ̂k − φk∣∣∣ be the
residual at tk and s be the median residual for all k. We create an additional set of
weights δk for each k = 0, . . . , N − 1 as

δk =


(

1−
(
φ̂k−φk

6s

)2
)2

, if
(
φ̂k−φk

6s

)
< 1

0, otherwise
(5.4)

Equation (5.4) uses a median so that large outliers are clipped to 0, similar to the use
of the median absolute deviation from Section 4.1.2. For each new fit in the second
iteration, the weights w(ti) are multiplied point-wise by the residual weights δ to
perform the local regressions.

Finally, we perform a shift of the smoothed φ̂ to compensate for the first day’s
atmospheric conditions by setting φ̂i = φ̂i − φ̂0 for all i = 1, . . . , N − 1. This step
is necessary for φ solved using the SBAS formulation of Equation (2.12), since α0

is added to all other dates when the first date’s phase is assumed to be 0. While
Ferretti et al. (2000) use mean value of the common-reference interferogram phases
as an estimation of the first date’s atmospheric noise, here we use the y-intercept of
the smoothed time series, φ̂0, as an estimate of α0.

5.2 Synthetic Example

We first illustrate the LOWESS algorithm on a synthetic 3-year deformation time
series with a 12-day acquisition interval (Figure 5.2). The true deformation linearly
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Figure 5.2: Synthetic time series for one pixel φ (gray) containing a combination
of true deformation d (orange) and non-Gaussian tropospheric noise α: φ = d + α.
Note that the φ time series is offset by an amount equal to the noise on the first date,
due to the SBAS assumption that φ0 = 0.

increases to maximum of ∼ 3 cm after 1.5 years and deflates back to zero by the
end of 3 years. Non-Gaussian noise containing jumps of up to 8 cm is added to the
deformation. The time series is shifted by the noise on the first day so that φ0 = 0,
simulating the result from an SBAS inversion.

Figure 5.3 illustrates two iterations of the LOWESS algorithm the φ time series.
During the first iteration, each φ̂i is calculated using a locally weighted regression
with the weight based solely on the proximity to ti (Figure 5.3a). The resulting fit
tracks the general pattern of the data, but outlier points strongly influence the fit
(Figure 5.3b). The second iteration multiplies the proximity weighting from Figure
5.3a by the residual weighting, δ, calculated from the previous iteration (Figure 5.3c).
The second iteration is influenced less by the outlier points and has fewer spurious
bumps in the time series (Figure 5.3d). In general, more iterations may be performed;
in this example, further iterations change the fit by ∼ 1 mm or less.

After subtracting φ0 from all points, the results of the LOWESS estimate φ̂ are
shown in Figure 5.4 (green line). The LOWESS algorithm smooths away the large
spikes of turbulence noise in φ (Figure 5.4, gray) and captures most of the deformation
signal (Figure 5.4, orange) For comparison, we have also linearly filtered the noisy
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Figure 5.3: (a) First iteration of local fit at ti, weighted by window (orange) with
γ = 0.4 (∼1.2 year of data). (b) First iteration of smoothed φ̂i (orange line) for all i.
(c) Second iteration at ti with the updated residual weighting. The large anomalous
points have a smaller effect on the new local fit (green slope) compared to the original
(orange slope). (d) Result of second iteration of LOWESS smoothing for all i (green
line).
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Figure 5.4: Results of smoothing the synthetic noisy time series φ (gray with dots)
using the LOWESS algorithm (green) and a triangle filter (pink). True deformation
time series is shown in orange. Both the LOWESS algorithm and the triangle filter
use 40% of the data (a filter width of ∼1.2 years) and have been shifted to compensate
the first day’s atmospheric noise.

time series with triangle filter of width 1.2 years (Figure 5.4 pink line). The triangle
filter performs similarly to LOWESS when the noise is Gaussian; however, the large
turbulence jumps in this example cause the triangle filter to be pulled > 2 cm away
from the true deformation time series.

5.3 Sentinel-1 7-year Cumulative Surface Deformation

We demonstrate the LOWESS algorithm on real Sentinel-1 data over the Permian
Basin. We processed an additional three years of data (Jan. 2019 though Dec. 2021)
for Path 78 (Figure 3.5) following the processing strategy outlined in Section 3.3,
for a total of 151 SAR acquisitions from Nov. 2014 to Dec. 2021 We performed an
unregularized SBAS inversion to get a noisy time series φ for each pixel. To miti-
gate residual long wavelength noise from seasonal tropospheric patterns, we fit and
removed a quadratic surface from the deformation map at each SAR acquisition using
pixels with <2 cm of estimated deformation (Morishita et al., 2020). We then tem-
porally smoothed each pixel using the LOWESS algorithm with a weighting window
covering ≥ 2 years at all time intervals and 2 robust iterations. We similarly pro-
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cessed 147 descending Path 85 SAR acquisitions to create a 7-year cumulative LOS
deformation time series.

We also processed 148 SAR acquisitions from ascending Path 151 (west of Path
85) to cover the full Delaware Basin with at least 2 paths of data in all location.
The Path 151 footprint does not contain GPS station TXKM that was used as the
reference location for the other paths; instead, we used the technique presented in
Zebker (2021) to fit and remove a phase-elevation trend from all high-coherence pixels
in each interferogram and zero-reference the deformation. This method is effective
for study areas where only a subset of high-coherence interferogram pixels contain
significant deformation.
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Figure 5.5: Path 78 LOWESS smoothed algorithm (orange line) plotted against
the original noisy time series (gray) at pixels near (a) station TXFS, and (b) station
TXSO. GPS time series (blue dots) have been projected onto the radar LOS.

To assess the performance of the LOWESS-smoothed LOS deformation results,
we projected the available GPS ENU time series onto the radar LOS. As an example,
Figure 5.5a shows the LOS time series (blue dots) for GPS station TXFS. The unreg-
ularized InSAR time series (gray) contains up to 5-6 cm of tropospheric noise during
the summer months. However, the LOWESS solution (orange line) is unaffected by
the spikes and successfully tracks the ∼ 1cm of long term motion shown in the GPS
data. In Figure 5.5b, the LOS time series for GPS station TXSO shows a combination
of a 5-10 mm increase in LOS along with 10-15 mm of seasonal variations. While
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the trend is captured by the InSAR LOWESS solution, the seasonal variations are
smoothed over due to the 2 year weighting window.
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Figure 5.6: LOWESS smoothed solutions of bootstrap resampled noisy InSAR time
series at GPS station TXSO using a window size of (a) γ = 0.5 and (b) γ = 2 years.
Each smoothed resampling is shown as a green line, with the mean of all green lines
shown in black. (c) LOWESS InSAR solution compared to GPS stations projected
onto the radar LOS for the γ = 2 year case. Green shaded region shows ±2 standard
deviations as estimated by taking the standard deviation of all resampled solutions
from panel (b). (d) Bootstrap estimated standard deviation of LOWESS result for
γ = 0.5, 1, 2, and 3 years of smoothing.

We compared multiple choices of the LOWESS window size to determine an appro-
priate γ that balances the trade-off between noise reduction and temporal resolution.
To estimate the variance of the LOWESS-smoothed solution, we used the bootstrap
technique (Efron, 1979, Efron and Tibshirani, 1994). Bootstrapping repeatedly draws
a random sample with replacement of size N from φ0, . . . , φN−1 and computes a quan-
tity of interest on each resample; in our case, we perform LOWESS smoothing on each
resample. Bootstrapping has been included in InSAR time series packages such as
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GIAnT, MintPy, and LiCSBAS as a method of estimating uncertainty for linear de-
formation velocities (Agram et al., 2013, Yunjun et al., 2019, Morishita et al., 2020).

We calculated the bootstrap variance using γ = 0.5 (Figure 5.6a), γ = 1.0, γ = 2.0

(Figure 5.6b), and γ = 3.0 using InSAR data near GPS station TXSO. The variance of
the LOWESS smoothing on all resamples (green lines) indicates that using a smaller
window (Figure 5.6a) leads to a noisier deformation solutions than a larger window
(Figure 5.6b). Since the variance starts to converge after a 2 year window (Figure
5.6d), we chose γ = 2 for our deformation solutions. Note that as γ increases, the
variance in the middle of the time series drops more quickly than at the end points.
As with other linear fitting procedures, the uncertainty of the LOWESS estimated
slopes propagates into a larger uncertainty at the end points of the data.

The full set of GPS comparisons for Path 78 is shown in Figure 5.7. The additional
3 years of Sentinel-1 data allow for an additional two station comparisons (at TXM5,
TXB8) for a total of 15 stations within the Path 78 footprint. There is an average of 3
mm RMS difference between the smoothed GPS time series and the InSAR LOWESS
solutions for all time steps across the 15 stations, and a maximum absolute difference
of 1.3 cm at any time point (including seasonal variations).
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Figure 5.7: Comparison of permanent GPS stations projected onto the radar LOS
(blue dots) with Path 78 LOWESS smoothed algorithm (orange lines). Green shaded
region shows ±2 standard deviations as estimated by bootstrap resampling.
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Figure 5.8: Cumulative LOS deformation from Nov. 2014 to Dec. 2021 (ascending
Path 78). Blue areas indicate motion away from the satellite (subsidence or eastward).
Areas with low correlation have been masked. Black boxes indicate the zoomed-in
locations for Figure 5.9 panels (a) and (c). Purple outlines indicate (from west to
east) the Delaware Basin, Central Basin Platform, and Midland Basin.

Figure 5.8 shows the 7-year cumulative LOS deformation map for Path 78, where
areas with low average spatial coherence (< 0.2) or temporal coherence < 0.75 are
masked. While many spatial patterns present in Figure 5.8 are also visible in the 4-
year deformation map (Figure 4.5), there are several notable deformation rate changes
between the 2015-2018 period and the 2019-2021 period. For example, near the SWD
wells identified in Kim and Lu (2018) (Figure 5.9a), there was steady surface uplift
as injection volume increased from 2015-2018. After one of the injection wells (API
49533675) shut down operations after 2018, there was a gradual deflation for the next
three years (Figure 5.9b). In the northern Delaware Basin, many subsidence patterns
present in the 4-year cumulative maps show accelerating rates of subsidence as oil
production volumes increased through 2020. For example, a subsidence bowl on the
New Mexico side of the TX-NM border (Figure 5.9c) subsided 4-5 cm for the four
years of 2015-2018. As both oil and water production increased in the surrounding
wells, the subsidence rate increased to > 5 cm per year.

67



103.36 103.32 103.28

31.74

31.77

31.8

(1)(2)

2018-01-01(a)

103.7 103.6 103.5 103.4
31.9

32

32.1

32.2

2021-11-21(c)

4

2

0

2

4

LO
S

 [c
m

]
Noisy LOWESS

10

0

10

LO
S

 [c
m

]

20
15

20
16

20
17

20
18

20
19

20
20

20
21

7.5

5

2.5

0

2.5

LO
S

 [c
m

]

0

2

4

6

Ye
ar

ly
 In

je
ct

io
n 

Vo
lu

m
e 

(M
B

B
l)

Inj. 1
Inj. 2

(b)

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0

5

10

15
LO

S
 [c

m
]

0

50

100

150

P
ro

du
ct

io
n 

[M
B

B
l]

(d)
Water
Oil

Figure 5.9: (a) Cumulative LOS deformation for ascending Path 78 through Jan.
2018 using LOWESS smoothing algorithm. Red (negative LOS) indicates motion
toward the satellite. Grey dots show the locations of salt water disposal wells (Well
1: API 49530150, Well 2: API 49533675). (b) Time series within uplift in panel (a)
showing SBAS time series φ (blue) and LOWESS result (orange). Green and pink
bars show the annual injection volume of wells 1 and 2, respectively, indicating that
Well 2 shut down injection operations after 2018. (c) Cumulative LOS deformation
for ascending Path 78 from Nov. 2014 to Dec. 2021. Grey dots indicate the location
of oil or water production wells that were active between 2014 and 2019. (d) φ (blue)
and LOWESS result (orange) for InSAR data in the circle region in panel (c). Annual
production volumes of water (green) and oil (pink) for all wells contained in circle of
panel (c). Well-level production data was unavailable for 2020-2021.
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Figure 5.10: Cumulative LOS deformation from Nov. 2014 to Dec. 2021 for (a)
ascending Path 151 and (b) descending Path 85. Blue areas indicate motion away from
the satellite, areas with low correlation have been masked. Purple outlines indicate
(from west to east) the Delaware Basin, Central Basin Platform, and Midland Basin.
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In addition to the LOS decomposition using Paths 78 and 85 described in Section
4.1.3, we performed a second LOS decomposition using the cumulative deformation
of descending Path 85 (Figure 5.10a) and ascending Path 151 (Figure 5.10b). We
merged the two decompositions by averaging their region of overlap, and we cropped
the maps to the western contour of the Delaware Basin to obtain continuous ver-
tical (Figure 5.11a) and eastward (Figure 5.11b) deformation solutions. Note that
the two vertical and eastward decompositions show sub-centimeter agreement: the
merged deformation maps contain no visible artifacts at the path boundaries despite
incorporating data from independent SAR acquisitions.
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Figure 5.11: Cumulative (a) vertical and (b) eastward deformation from Nov. 2014
to Dec. 2021. Blue areas indicate subsidence (westward motion in panel (b)), red
indicates uplift (eastward). Purple outlines indicate the Delaware Basin (to the west)
and Central Basin Platform (east).
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Figure 5.12: InSAR-derived vertical surface deformation for the two-year intervals of
2016-2017 (a), 2018-2019 (b), and 2020-2021 (c). Hypocenters of >M2.0 earthquakes
recorded by TexNet (2017 and later) are shown as black dots. The hypocenters pic-
tured are from the high-resolution catalog (availabe at https://hirescatalog.texnet.
beg.utexas.edu/) that were relocated using GrowClust (Trugman and Shearer, 2017).
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By examining two-year increments of the cumulative LOWESS time series, we
observe changes to the spatial deformation patterns (Figure 5.12). We divide the
data into two-year intervals to match our choice of smoothing window size γ. During
2016-2017 (Figure 5.12a), the largest subsidence occurred in the southern portion of
the Delaware Basin. In this region, linear deformation features are visible near an
earthquake cluster recorded by TexNet. The volumes of oil production and wastewater
injection increased during 2018-2019 (Figure 5.12b), leading to substantially more
total uplift and subsidence. During this period, we observe 2-3 cm of uplift in areas
where Ge et al. (2022) modeled an increase in pore pressure within the Delaware
Mountain Group due to wastewater disposal. We also observe an uplift pattern near
a new cluster of earthquakes in the western portion of the Delaware Basin within the
Culberson-Mentone Earthquake Zone (CMEZ, Hennings et al. (2021)). The CMEZ
contained the largest increase in recorded earthquakes during the 2020-2021 period
(Figure 5.12c), including the M5.0 Mentone earthquake (Skoumal et al., 2020b).

The surface deformation in the CMEZ during 2020-2021 contains multiple linear
patterns aligning with clusters of earthquakes (Figure 5.13). For example, there was
1.5-2 cm of subsidence along transect (b) (Figure 5.13) which showed no deforma-
tion prior to 2020. Previous studies have suggested that faults within the southern
Delaware Basin are producing linear deformation patterns due to aseismic slip (Pepin
et al., 2022); however, further modeling is needed to attribute causes to the most
recent deformation in the western Delaware Basin.

.
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Figure 5.13: (a) Vertical surface deformation and TexNet recorded earthquakes
(black dots) for during 2020-2021 in the Culberson-Mentone Earthquake Zone
(CMEZ). The M5.0 earthquake (purple dot) occurred on March 26, 2020. Verti-
cal surface deformation along transects (dashed lines) are shown in panels (b) and (c)
for two-year intervals of 2016-2017 (blue), 2018-2019 (orange), and 2020-2021 (green).
Both transects run from north to south as distance increases.
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Chapter 6

Automatic Detection of InSAR Surface Deformation Signals

in the Presence of Severe Tropospheric Noise

Automatic detection of surface deformation features from a large volume of In-
terferometric Synthetic Aperture Radar (InSAR) data is challenging, because the
magnitude of InSAR measurement noise varies substantially in both space and time.
In this chapter, we present a computer vision algorithm based on Laplacian of Gaus-
sian (LoG) filtering for detecting the size and location of unknown surface deformation
features. Because our algorithm detects spatially coherent “blob-like” features, tropo-
spheric noise artifacts that share similar spatial characteristics may also be detected.
We estimate the tropospheric noise spectrum directly from data, which allows us to
simulate new instances of noise that resemble the actual InSAR observations. Based
on these simulations, we quantify the likelihood that a detected feature is a real de-
formation signal. We demonstrate the performance of our algorithm using ascending
and descending Sentinel-1 data from Chapter 4 acquired between 2014 and 2019. We
detect clusters of deformation features associated with oil production, wastewater in-
jection, and fault activities. The number of detected deformation features increases
substantially over the study period, which is consistent with the overall rise in oil
production within the Permian Basin since 2014.

6.1 Algorithm

6.1.1 Automatic Feature Detection

Given a surface deformation map M derived from InSAR data, the value Mij at
the ith row and jth column represents the magnitude of a cumulative, seasonal, or
transient deformation signal at this pixel. Because the earth can be considered as a
stratified elastic-viscoelastic medium, surface deformation features are often spatially
coherent (Segall, 2010). In this study, our goal is to automatically detect these features
in an InSAR deformation map M that covers a very large region (Algorithm 1).

There have been many computer vision algorithms that were designed to auto-
matically detect spatially coherent “blob-like” features in 2D image data (Lindeberg,
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Figure 6.1: Laplacian of Gaussian (LoG) kernels with (a) σm = 30 pixels and (b)
σm = 80 pixels for an image of size of 500-by-500 pixels.

1993; 1998, Lowe, 2004). In this study, we employ the Laplacian of Gaussian (LoG)
filters as a blob detector. An LoG kernel K(m) with a size σm is written as:

K
(m)
ij =

(
(i− l)2 + (j − l)2 − 2σ2

m

2πσ4
m

)
e
− (i−l)2+(j−l)2

2σ2m (6.1)

where pixel indices ij ∈ {0, 1, . . . , 2l}. The unit of σm is given in pixels, which can
be scaled to meters based on the pixel spacing of the InSAR deformation map M .

We generate a set of LoG kernels K(1), K(2), . . . with progressively larger σm (Fig-
ure 6.1), and calculate the mth filter response L(m) as:

L(m) = M ∗K(m) (6.2)

Here ∗ denotes the 2D discrete convolution, which is typically computed using the Fast
Fourier Transform (FFT) algorithm because of its superior computational efficiency
(Szeliski, 2022).

To demonstrate how to estimate the size of an unknown deformation feature from
the filter responses, Figure 6.2 (a) shows a 500 × 500 synthetic deformation map M
that contains one Gaussian-shaped uplift feature in the upper left and one elliptical
Gaussian subsidence feature in the lower right. We filtered this deformation map
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Figure 6.2: (a) A synthetic deformation map that contains one Gaussian-shaped
uplift feature in the upper left and one elliptical Gaussian subsidence feature in the
lower right. (b) LoG response amplitudes for 20 filters with various sizes (σm) at
three marker points. The marker locations are shown in panel (a). (c)-(e) The LoG
filter responses for σm = 12, 50, and 84.
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using 20 LoG kernels of sizes ranging from σ1 = 3 pixels to σ20 = 100 pixels with
a base-2 logarithmic spacing, and the filter responses are shown in Figure 6.2 (b)-
(e). For the round uplift case, the filter response L(m) (the black curve in Figure 6.2
(b)) is strongest when the kernel size σm matches the deformation feature radius r
as r =

√
2σm. This is known as the extreme point, or the local maximum points of

|L(m)| for all attempted σm. For the elliptical subsidence case, the extreme point is
reached when the average length of the two primary axes of the deformation feature
is ∼

√
2σm (the green curve in Figure 6.2 (b)). For the case of no deformation, no

substantial filter response is generated for any filter size (the gold curve in Figure 6.2
(b)).

In the case that two candidate blobs have more than 50% overlapping area, the
blob with a smaller size is discarded. Additionally, the LoG filter may falsely flag
ghost blobs at the edges of real deformation features. This is because deformation
features with strong curvature at the center also contain a strong opposite-signed
curvature near the border (Lindeberg, 1998). To remove those false positives, we
use the distance from the candidate blob’s center location to the nearest deformation
amplitude extremum as a measure. If this distance is close to the blob radius, the
detection is likely a ghost blob. In our test case, we discarded blobs with local
extremum distances larger than 75% of the blob radius, which effectively removed all
visible false positives near the edge of real deformation features.

For the kth detected deformation feature, our algorithm outputs the blob center
location (ik, jk), the blob radius rk, the filter response magnitude |gk| at the extreme
point, and the deformation magnitude |d̄k| defined as the weighed maximum of all
pixels within the kth blob:

d̄k = max
kk
|wkkMkk| (6.3)

Here the weight wkk equals exp [−(rkk/rk)
2], where rkk is the distance between a pixel

within the blob and the blob center. The exponential weighting prevents pixel outliers
from distorting the measure of feature magnitude.

We can exclude undesired deformation features by setting magnitude thresholds
on |gk| and |d̄k| based on users’ interest. Furthermore, we need to determine whether
a detected deformation feature has a signal magnitude above the noise level of the
InSAR deformation map, which is the focus of the following method sections.
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Input: 2D InSAR deformation map M
Result: For each k ∈ 1, . . . , Nd detections, the algorithm outputs the blob

center location (ik, jk), the blob radius rk, the filter response
magnitude |gk| at the extreme point, the deformation magnitude |d̄k|

// Calculate filter responses:
foreach σm ∈ {σmin . . . σmax} do

L(m) = M ∗K(m)

end
// Find candidate blobs from local extrema:
for (i, j,m) ∈ L do

if L[i, j,m] is local extremum then
Compute r =

√
2σm

Add (i, j, r) to list of candidate detections
end

end
// Prune blobs with overlap:
foreach b1 := (i1, j1, r1), b2 := (i2, j2, r2) ∈ candidates do

if Overlap(b1, b2) > 0.5 then
Remove smaller of b1, b2

end
end
// Prune edge blob false positives:
foreach bk := (ik, jk, σk) ∈ candidates do

Find coordinates (u, v) of local max of M within radius rk around (ik, jk)
if
√

(x− u)2 + (y − v)2 > 0.75 then
Discard bk

end
end
// Prune with thresholds γg, γd:
foreach bk := (ik, jk, rk, |gk|, |d̄k|) ∈ candidates do

if |gk| < γg or |d̄k| < γd then
Discard bk

end
end

Algorithm 1: LoG Based Deformation Feature Detection
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6.1.2 Tropospheric Noise Spectrum

InSAR measurement noise can also produce spatially coherent "blob-like" features
that are detectable by our algorithm. Here we focus on characterizing the tropospheric
turbulence noise in each SAR scene. This is because tropospheric turbulent noise
(1) is correlated in space (Emardson et al., 2003, Lohman and Simons, 2005); (2)
is present in all InSAR data sets with greatly varying magnitudes (Barnhart and
Lohman, 2013, Hooper et al., 2012); and (3) is often the primary noise source that
limits InSAR measurement accuracy (Jolivet et al., 2014, Bekaert et al., 2015a, Parker
et al., 2015).

Consider an interferogram formed using two SAR scenes acquired at times t1 and
t2. In the case that tropospheric turbulence noise is the dominant noise term, the
measured interferometric phase ∆φ1,2 (in radians) at a pixel of interest can be written
as (Zebker et al., 1997):

∆φ1,2 ≈
4π

λ
(α2 − α1 + ∆d1,2) (6.4)

where λ is the radar wavelength, α1 and α2 represent the tropospheric delay at the two
SAR acquisition times t1 and t2, and ∆d1,2 is the Line-Of-Sight (LOS) deformation
(d2 − d1) between t1 and t2. The units of λ, α1, α2, and ∆d1,2 are centimeters.

Given N SAR acquisitions, we can estimate the tropospheric noise on the nth SAR
acquisition date by averaging N − 1 interferograms that share the common reference
SAR scene n (Tymofyeyeva and Fialko, 2015):

ᾱn =
λ

4π

1

N − 1

(
N∑

k=1,k 6=n

∆φk,n

)
= αn +

1

N − 1

(
N∑

k=1,k 6=n

∆dk,n −
N∑

k=1,k 6=n

αk

)
(6.5)

Because tropospheric turbulence noise is uncorrelated in time for scales longer than
one day (Emardson et al., 2003, Onn, 2006), the term 1

N−1

∑
αk → 0 when N is suf-

ficiently large. Under the assumption that 1
N−1

∑
∆dk,n is relatively small comparing

to αn, we compute ᾱn at each pixel to obtain a tropospheric turbulence noise map
A(n) for the nth SAR acquisition date over the entire study area. In Section 6.3.1,
we further discuss the impact of the deformation signals on our tropospheric noise
analysis.

We next compute the 2D Power Spectral Density (PSD) of the nth tropospheric
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noise estimates at wavenumber kx, ky (with units 1/m) as (Jacobs et al., 2017):

PSDn(kx, ky) =
|Â(n)|2

NxNy(
1

∆x∆y
)

(6.6)

where Â(n) is the Discrete Fourier transform (DFT) of the nth tropospheric noise map
A(n), ∆x and ∆y are the interferogram pixel spacings (in meters) in the x and y

directions, Nx and Ny are the total number of pixels in the x and y directions, and
the squared absolute value and division are pixel-wise operations.

As an example, Figure 6.3 (a) shows a synthetic 2D tropospheric turbulence noise
map. We calculate the 2D PSD of the noise map following Equation (6.6) (Figure 6.3
(b)). Under the assumption that tropospheric noise is isotropic, we average all pixels
with a distance k =

√
k2
x + k2

y from the origin to generate a 1D PSD as a function of
k (Hanssen, 2001). We plot the 1D PSD on a log-log scale, which rolls off following
a power law at higher frequencies (Figure 6.3 (c)). By contrast, the power spectrum
of spatially uncorrelated while noise is relatively flat across all frequencies k (Figure
6.3 (d)-(f)).
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Figure 6.3: (a) A simulated 2D turbulent atmospheric noise map with 500×500 pixels
at 100 meter pixel spacing. (b) 2D Power Spectral Density (PSD) of the tropospheric
noise map in panel (a). (c) 1D PSD as a function of wavenumber k =

√
k2
x + k2

y,
under the assumption that tropospheric noise is isotropic. (d) A simulated 2D white
noise map (spatially uncorrelated) with the same dimension and pixel spacing as panel
(a) (e) 2D PSD of the white noise map in panel (d). (f) 1D PSD as as a function
of wavenumber k =

√
k2
x + k2

y. Here we averaged the 1D PSD of 50 2D white noise
instances to improve the statistical stability of the spectral estimates.
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6.1.3 Uncertainty Quantification

Using the average 1D PSD of all N InSAR-observed tropospheric turbulence noise
maps, we can simulate N 2D noise incidences S(1), . . . , S(N) that closely resemble the
real tropospheric noise over the study area (Hanssen, 2001). Using these simulated
noise maps, we form up to N(N − 1)/2 noise-only interferograms, and derive a time
series solution following the same method for generating the real InSAR deformation
map M (e.g. (Sandwell and Price, 1998, Berardino et al., 2002)). Because these
synthetic interferograms contain no deformation, any "blob-like" features in the sim-
ulated time series solution are associated with tropospheric noise. We record the
radius rk, the filter response magnitude |gk| and the magnitude |d̄k| of each noise
feature using our automatic blob detection algorithm.

Similarly, we generate many synthetic InSAR data sets that share the same noise
spectrum derived from data, and record all detected noise blobs. We create 2D his-
tograms of the noise attributes (filter response magnitude vs. radius and deformation
magnitude vs. radius), which allows us to remove candidate blob features in the real
deformation map M that are likely due to tropospheric noise artifacts.

6.2 Test Site

We tested our automatic detection algorithm using three cumulative LOS defor-
mation maps (Nov. 2014 to Jan. 2017, Jan. 2018, and Jan. 2019) derived from 84
Sentinel-1 acquisitions from ascending Path 78 (see Figure 4.5(a) in Chapter 4). For
each SAR acquisition date used to create the deformation maps, we estimated the
tropospheric turbulence noise using all interferograms that contain the SAR scene
based on Equation (6.5). We removed a quadratic ramp in each noise map, and we
calculated the average 1D PSD of all 84 noise maps as described in 6.1.2. Using the
average noise spectrum, we generated 29 synthetic noise maps, which corresponds to
the 29 Sentinel-1 acquisition dates between November 2014 and January 2017. We
formed noise-only synthetic interferograms and calculated the cumulative stacking
solution through the stacking method (Equation (4.1)).

We ran our blob detection algorithm on the noise-only stacking solution, and we
recorded the size, the filter response magnitude, and the magnitude of each noise blob
feature. We repeated this process until the number of recorded detections exceeded
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100,000. We smoothed the resulting histograms using a kernel density estimate (KDE)
(Scott, 2015) and generated 2D empirical Probability Density Functions (PDFs) of the
noise attributes for the November 2014-January 2017 cumulative LOS deformation
map. Similarly, we ran additional simulations to generate 2D histograms of the noise
attributes for the November 2014-January 2018, and November 2014-January 2019
cumulative deformation maps. These histograms were then used to remove candidate
blob features in the real Sentinel-1 InSAR deformation maps that are likely due to
tropospheric noise artifacts.

We also tested the detection algorithm using in the three descending cumulative
deformation maps spanning November 2014 to January 2017, January 2018, and
January 2019 data derived from 81 SAR acquisitions from Path 85 (Figure 4.5(b)).
We characterized the tropospheric noise from InSAR data, and identified deformation
features in the cumulative deformation maps that are likely real.

6.3 Results and Discussion

6.3.1 Path 78 Detections

Figure 6.4 (a)-(c) shows three estimated tropospheric noise maps for Sentinel-1
ascending Path 78 acquisitions 2017-12-12, 2018-09-14, and 2017-06-15. We observe
blob-like turbulence features ranging from a few kilometers up to tens of kilometers in
diameter, and the magnitude of the tropospheric turbulence noise varies substantially
on different days (Figure 6.4 (d)). For example, the maximum absolute tropospheric
noise observed on 2017-12-12, 2018-09-14, and 2017-06-15 are 1.8 cm, 3.2 cm, and 12.6
cm, respectively. Overall, ∼ 50% of Path 78 scenes were acquired in quiet atmospheric
conditions with a maximum noise level under 4 cm. Approximately, 35% scenes were
acquired in moderate turbulence conditions (a maximum noise level of 4-10 cm), and
15% scenes were acquired in strong turbulent noise conditions (a maximum noise level
of 11-15 cm).

Because InSAR phases are measured with respect to a reference point, we calcu-
lated tropospheric noise estimates relative to the center of the map (the noise reference
point). We plotted the mean absolute tropospheric noise vs. distance to the noise
reference point (Figure 6.4(e)). For the majority of the Path 78 acquisitions, tropo-
spheric turbulent noise increases as the square root of the distance for the first ∼ 50
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Figure 6.4: InSAR-estimated tropospheric turbulence noise maps for three Path 78
SAR acquisitions: (a) 2017-12-12 (up to 1.8 cm noise), (b) 2018-09-14 (up to 3.2
cm noise), and (c) 2017-06-15 (up to 12.6 cm noise). (d) The distribution of peak
tropospheric noise magnitude (in centimeters), (e) the root mean squared value of
tropospheric noise vs. distance from the center of the map, and (f) the estimated
1D PSDs for 84 Sentinel-1 Path 78 acquisitions used in this study. In panel (e) and
(f), the color lines represent three SAR acquisitions (panel (a)-(c)) with different
tropospheric noise levels. The black line in panel (f) represents the mean PSD of all
84 acquisitions.

km, and then the magnitude of the tropospheric noise does not change much as the
distance increases. This means that the tropospheric noise is spatially correlated with
a correlation length of ∼ 50 km, and the tropospheric noise magnitude over the flat
portion of the curve is a measure of the noise activity level.

The 1D PSDs for the 84 tropospheric turbulence noise maps give an alternative
view of the distribution of noise power over different frequencies (Figure 6.4 (f). For
most spatial frequencies, the PSDs decay following the -8/3 power law described in
previous studies (Hanssen, 2001, Onn, 2006). This slope flattens at the low frequencies
because we removed the quadratic phase in the noise solutions. The slope also flattens
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Figure 6.5: (a)-(c) Log Probability Density Function (PDF) of detecting tropospheric
noise blobs as a function of feature size r and filter response magnitude |g| for three
cumulative LOS deformation maps: November 2014 - January 2017 (29 SAR scenes
from Path 78), November 2014 - January 2018 (52 SAR Scenes from Path 78), and
November 2014 - January 2019 (84 SAR Scenes from Path 78). (d)-(f) Log Probability
Density Function (PDF) of detecting tropospheric noise blobs as a function of feature
size r and deformation magnitude |d| for the same three cumulative LOS deformation
maps. The PDFs were generated from 2D histograms using a kernel density estimate
(KDE) (Scott, 2015).

at high frequencies, where decorrelation noise introduces pixel-level variations in the
noise map.

Using the mean 1D PSD shown in Figure 6.4 (f), we simulated instances of tro-
pospheric turbulence, and computed the empirical PDFs of the noise attributes for
each deformation map (Figure 6.5). Most of detected noise features have small radii
(r < 5 km). For the 29 SAR acquisition case, the noise features are unlikely to be
larger 2 cm in magnitude or have a filter response stronger than 0.7 (Figure 6.5 (a),
(d)). For the 52 SAR acquisition case, the noise features are unlikely to be larger
1.5 cm in magnitude or have a filter response stronger than 0.6 (Figure 6.5 (b), (e)).
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For the 84 SAR acquisition case, the noise features are unlikely to be larger 1.2 cm
in magnitude or have a filter response stronger than 0.5 (Figure 6.5 (c), (f)). Note
that the maximum and minimum sizes of detected features in Figure 6.5 (d)-(f) are
determined by the choice of maximum and minimum kernel sizes σmax and σmax in
our automatic detection algorithm. By imposing the prior knowledge that oil and
gas-production related deformation bowls are unlikely to be larger than 30-40 km
in the Permian Basin (Staniewicz et al., 2020), σmax was set so that the maximum
detected feature radius r was approximately 20 km. Thus, large-scale tropospheric
noise features (radius > 20 km) were not recorded in the noise simulations.
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Figure 6.6: Detected deformation features (gray circles) from the three Path 78
cumulative LOS deformation maps. Features with more than 5% chance of being
noise for their radius, according to either the filter magnitude or image magnitude
PDFs (Figure 6.5), have been removed. Green lines correspond the boundaries of the
Delaware Basin, Central Basin Platform, and Midland Basin from west to east.

Using the empirical PDFs of the noise attributes, we removed detections with
more than 5% chance of being noise from three Path 78 cumulative deformation
maps (Figure 6.6). We identified 57 deformation features in the Nov. 2014-Jan. 2017
cumulative deformation map, 147 features in the Nov. 2014-Jan. 2018 map, and
268 features in the Nov. 2014-Jan. 2019 map. The increasing number of detected
deformation features is due to (1) the oil and gas production rate experienced a sharp
rise over the study period (Staniewicz et al., 2020); and (2) a larger number of SAR
acquisitions reduces the noise level in the InSAR cumulative deformation solutions.

The detected features are mainly clustered in regions within the Midland Basin
and the Delaware Basin. Here oil production and wasterwater injection caused many
centimeter-level subsidence and uplift features. In the Southern Delaware Basin,
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the observed linear deformation features parallel the inferred favorable fault plane
orientation proposed by (Lund Snee and Zoback, 2018), and they align with a cluster
of recent shallow earthquakes cataloged by TexNet (Savvaidis et al., 2019). Very few
deformation features were detected in the Central Basin Platform, where oil and gas
are mostly produced from conventional reservoirs and the subsurface pressure was
well maintained.

For the West Texas case, the residual deformation term 1
N−1

∑
∆dn,k in Equa-

tion (6.5) does not significantly influence our noise simulations. To demonstrate this,
Figure 6.7 (a) shows the tropospheric noise estimates on a quiet atmospheric date
(2018-09-04) and Figure 6.7 (b) shows the cumulative LOS deformation solution be-
tween Nov. 2014 and Jan. 2019. The 1D PSDs for the noise-only map and the
noise plus deformation map are very similar (Figure 6.7 (c)). This is because the
total integrated power of the noise map is five times larger than the total power of
the deformation map. Since the residual deformation contribution in Equation (6.5),

1
N−1

∑
∆dn,k, is much less than the total cumulative deformation over the entire study

period, we conclude that this term in the tropospheric noise estimates has negligible
effects on the detection confidences derived from the noise simulations.
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Figure 6.7: (a) InSAR-estimated tropospheric noise map for the Path 78 SAR
acquisition 2018-09-14. (b) Cumulative LOS deformation from Nov. 2014 to Jan.
2019 as inferred from Sentinel-1 Path 78 InSAR data. (c) 1D PSDs derived from
the tropospheric noise map (black) and the tropospheric noise plus deformation map
(red).
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6.3.2 Path 85 Detections
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Figure 6.8: (a) The distribution of peak tropospheric noise magnitude (in centime-
ters), (b) the root mean squared value of tropospheric noise vs. distance from the
center of the map, and (c) the estimated 1D PSDs for 81 Sentinel-1 Path 85 acqui-
sitions used in this study. In panel (b) and (c), the color lines represent the average
estimates for Path 85 (orange) and Path 78 (purple).

Table 6.1: Tropospheric noise characteristics for Sentinel-1 Path 85 and Path 78 data
over West Texas

Path 78 Path 85

Average Variance [cm2] 1.38 0.78
Variance of the Noisiest Date [cm2] 10.68 3.74
Average Peak Amplitude [cm] 5.36 4.58
Peak Amplitude of the Noisiest Date [cm] 15.81 13.72

Similar to the ascending Path 78 results, approximately 50% of descending Path
85 scenes were acquired in quiet atmospheric conditions with a maximum noise level
under 4 cm (Figure 6.8 (a)). However, only 2 out of 81 descending scenes were acquired
in strong turbulent noise conditions (a maximum noise level over 10 cm), while 14
out of the 84 ascending scenes were acquired in such conditions. We also found that
the average tropospheric noise level is lower for Path 85 than Path 78 (Figure 6.8
(b)-(c)). For example, the mean absolute tropospheric noise is 50% larger for Path
78 than Path 85 at 50 km, and the mean noise PSD is more than 2 times larger for
Path 78 than Path 85 at a spatial frequency of 0.1 cycles/km. We summarized the
noise statistics of Path 78 and Path 85 acquisitions in Table 6.1. The differences are
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Figure 6.9: Detected deformation features (gray circles) from the three Path 85
cumulative LOS deformation maps. Features with more than 5% chance of being
noise for their radius, according to either the filter magnitude or image magnitude
PDFs (Figure 6.5), have been removed. Green lines illustrate the boundaries of the
Delaware Basin and Central Basin Platform, from west to east.

due to the fact that Sentinel-1 satellites acquire Path 78 data over West Texas at 7:50
p.m. local time, and Path 85 data at 6:55 a.m local time. The expected tropospheric
noise signatures are typically more substantial in late afternoon than early morning.

Our algorithm identified similar numbers of blob features from the ascending and
descending cumulative LOS deformation maps that span the same period of interest.
Because the tropospheric noise level is generally lower in Path 85 data, fewer Path 85
detections need to be removed for having > 5% chance of being tropospheric noise.
As a result, we detected more deformation features from the Path 85 dataset than the
Path 78 dataset. It is also worth noting that the number of detected deformations
in both paths increases substantially over the study period. This is consistent with
the overall rise in oil production within the Permian Basin during this time period
(Figure 6.10) .
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Figure 6.10: The number of deformation features (< 5% chance of being tropospheric
noise) detected from three Path 78 cumulative LOS deformation maps (Figure 6.6)
and three Path 85 cumulative LOS deformation maps (Figure 6.9). Only detections
from the overlapping region of the two paths are counted. The Permian Basin average
daily oil production from 2014 and 2018 is shown as the orange line.
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Chapter 7

Summary and Conclusions

In this dissertation, we demonstrated the ability to derive accurate surface defor-
mation maps over broad areas from InSAR measurements corrupted by severe tro-
pospheric noise. We further demonstrated techniques for estimating uncertainty of
automatically detected deformation features. Specifically, we have made the following
contributions:

1. We developed Python-based InSAR time series analysis software that processes
geocoded SAR images acquired from multiple imaging geometries and recon-
structs surface deformation in eastward and vertical directions.

2. We performed a rigorous analysis of all noise sources in the Permian Basin
Sentinel-1 InSAR data. We identified that the dominant noise term is the
tropospheric turbulence noise with up to 15 cm non-Gaussian outliers. We
developed methods for characterizing tropospheric noise and its power spectral
density directly from InSAR data, as well as methods for mitigating the impact
of the troposphere noise outliers.

3. We designed scalable, robust time series algorithms for reconstructing the tem-
poral evolution of surface deformation over very wide regions. Based on inde-
pendent validation from GPS permanent stations, we achieved millimeter-level
accuracy in the cumulative surface deformation solutions.

4. We developed a computer vision algorithm for automatically detecting surface
deformation signals of unknown sizes in basin-scale InSAR maps. The detection
algorithm produces uncertainty measures for each detected feature based on a
realistic tropospheric turbulence noise model.

5. InSAR reveals numerous subsidence and uplift features near active production
and disposal wells, as well as linear deformation patterns associated with fault
activities near clusters of seismic activity. Our InSAR deformation maps are
now openly available through the Center for Integrated Seismicity Research
(CISR) for the broader scientific community and stakeholders.
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With multiple government and commercial SAR missions scheduled in upcoming
years, there will be opportunities for creating continental and global deformation
products from InSAR data. For example, the Observational Products for End-Users
from Remote Sensing Analysis (OPERA) project at NASA JPL has been tasked
to produce a North America land-surface displacement product from Sentinel-1 and
NISAR data (Bekaert et al., 2021). Since the processing and analysis techniques
required for such a product must be scalable and robust, the techniques developed
here can contribute to these efforts.

Future work beyond extending the results presented here may include:

• Combining subsurface pore pressure models using the wastewater disposal his-
tory (e.g. Ge et al. (2022)) with the recent changes to surface deformation to
determine subsurface flow barriers and locations of elevated pressure. This effort
could leverage the recent detailed compilation of known faults in the Delaware
Basin (Horne et al., 2021).

• Simulating both seasonal and stratified tropospheric noise to more accurately
estimate uncertainty. The noise simulations presented in Chapter 6 used tropo-
spheric turbulence, which was the dominant error source for West Texas. The
seasonal variations of tropospheric noise may be important to accurately infer
uncertainty for other study areas.

• Incorporating additional error sources into the noise simulations, including un-
wrapping errors (Yunjun et al., 2019), closure phase bias (Zheng et al., 2022),
and speckle-induced uncertainty (Zwieback and Meyer, 2022).

• Combining auxiliary data sources with the automatically detected deformation
features of Chapter 6 to classify/categorize possible causes of deformation.

• Increasing accessibility of InSAR-derived products by leveraging new, cloud-
friendly data formats (e.g. Kellndorfer et al. (2022)).
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Appendix A

Geomechanical Modeling of Pecos

Here we present details of the geomechanical modeling performed by Hunjoo Lee
(Staniewicz et al. (2020)) using the surface deformation data from Chapter 4.

A.1 Dislocation (Fault Slip) Model

Okada (1992) derived the analytical surface displacement field due to a finite
rectangular fault slip in an elastic half-space. The Okada solutions provide three
cases of displacement on a fault: strike-slip, dip-slip, tensile opening. In this study,
we focused on the dip-slip case, because the Pecos area is in a normal faulting regime
(Lund Snee and Zoback, 2018). The assumption of predominant dip-slip along normal
faults is also supported by fault plane solutions (TexNet Earthquake Catalog).

Considering the case of dip slip on a finite rectangular fault (Figure A.1), the
vertical surface displacement uz(x, y, 0) can be expressed as:

uz(x, y, 0) =
U2

2π
[uB2 sin δ + uB3 cos δ] (A.1)

where U2 is the magnitude of dip slip. The rest of terms on the right are determined
by fault geometry parameters: the fault dip angle (δ), the depth to the top of the
fault (Z), the fault width along the dip direction (W ), and the fault length along the
strike direction (L).

We located four faults based on InSAR observations, and assumed a uniform slip
on each fault. We estimated the best-fit fault parameters for each fault independently
by minimizing the objective function (Du et al., 1992):

arg min
U2,i

‖GiU2,i − di‖2
2 (A.2)

where Gi is the discrete Green’s function that maps a dip slip, U2,i, on the ith rect-
angular fault to the observed vertical deformation at specific surface locations. Gi is
a function of fault geometry parameters as shown in Equation (A.1). di is a vector
of vertical deformation observations associated with the ith fault from InSAR data.
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Table A.1: Best-fit fault parameters as derived from the dislocation model
Fault #1 Fault #2 Fault #3 Fault #4

1-Longitude (◦) -103.563 -103.589 -103.585 -103.529
1-Latitude (◦) 31.367 31.413 31.463 31.470
2-Longitude (◦) -103.503 -103.505 -103.440 -103.468
2-Latitude (◦) 31.337 31.355 31.374 31.432
Dip Angle (◦) 60 60 50 57.5
Depth (km) 0.91 0.91 1.07 1.52
Width (km) 0.61 0.30 1.07 0.61
Slip (cm) 9.1 15.2 9.1 15.2

Through a grid-search, we solved for the fault dip angle, the depth to the top of
the fault, the width along the dip direction, and the magnitude of dip slip on each
fault to minimize the sum of squared residuals normalized by the data error of 1
cm (Normalized Sum of Squared Residuals; NSSR). The fault length in the strike
direction is set to be sufficiently long to satisfy the plane strain condition. As an
example, Figure A.2 shows how the data misfit varies with fault parameters for fault
#3. The maximum R-squared (R2) values for the best-fit fault parameters are in the
range of 0.95 and generally agree with the fault parameters that satisfy the minimum
NSSR.

The best-fit fault parameters of the four faults are listed in Table A.1, which
produce 3D surface deformation patterns as shown in Figure A.3. To illustrate how
surface deformation observations are related to the model parameters, Figure A.4
shows the estimated surface subsidence associated with the fault #3 long the B-B’
transect with various fault properties. The ratio of the uplift volume to the subsi-
dence volume is a function of the seismic potency and the fault dip angle (Segall and
Heimisson, 2019). Based on the results in Figure A.4 (a), the fault dip angle domi-
nantly controls the uplift volume relative to the subsidence volume. The slope from
the uplift on the footwall to the subsidence on the hanging wall becomes steeper as
the fault becomes shallower (Figure A.4 (b)). The fault width, as measured along the
the dip direction, mostly contributes to the width of the subsidence bowl (Figure A.4
(c)). The dip-slip magnitude only has impact on the amplitude of the curve without
any influence on the shape of the surface deformation (Figure A.4 (d)).

96



L
-c

z y

xZ

W 𝛿
U2

Figure A.1: A finite rectangular fault model from Okada (1992). Here U2 is the
magnitude of dip slip (positive in reverse fault direction), δ is the dip angle, Z is the
depth to the top of the fault, c is the depth to the bottom of the fault, L is the length
along the strike direction, and W is the width along the dip direction.
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Figure A.2: The Normalized Sum of Squared Residuals (NSSR) and R-squared (R2)
of fault #3 relative to (a) fault dip angle (δ), (b) fault depth from the surface to the
top of the fault (Z), (c) fault width along the dip direction (W ), and (d) net dip slip
magnitude (U2).
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Figure A.3: The predicted surface deformation from the Okada fault model with
best-fit parameters in the (a) vertical direction (positive means uplift), (b) northward
direction (positive means north, negative means south), and (c) eastward direction
(positive means east, negative means west). (d) Comparison of the 3D deformation
profiles along A-A′ transect that is perpendicular to fault plane.
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Figure A.4: Estimated surface subsidence along the B-B’ transect associated with
fault #3 with various fault properties: (a) fault dip angle (δ) of 55◦, 65◦, 75◦, 85◦,
(b) fault depth from the surface to the top of the fault (Z) of 0.6 km, 1.2 km, 1.8
km, 2.4 km, (c) fault width along the dip direction, W ) of 0.6 km, 1.2 km, 1.8 km,
2.4 km, and (d) net dip slip magnitude (U2) of 6 cm, 12 cm, 18 cm, 24 cm.
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A.2 Cylindrical Reservoir Compaction/Subsidence Model

Geertsma et al. (1973) derived the surface displacement field due to a uniform
pressure drop of a cylindrical reservoir at a depth D (Figure A.5). Under the assump-
tion that the reservoir radius R is larger than the reservoir height H, the cylindrical
reservoir deforms primarily in the vertical direction. The magnitude of the reservoir
compaction ∆H due to a pressure drop ∆P can be written as:

∆H = Hcm∆P (A.3)

Here the uniaxial compaction coefficient cm can be expressed as

cm = αp
1 + ν

1− ν
cb
3

(A.4)

where αp is Biot’s coefficient, cb is the bulk compressibility, and ν is the Poisson’s
ratio. Surface vertical deformation uz due to the reservoir compaction ∆H can be
expressed as:

uz(r, 0) = 2(1− ν)∆HA(ρ, η) (A.5)

where A(ρ, η) = R
∫∞

0
e−DαJ1(αR)J0(αr) dα, ρ = r/R, and η = D/R. The maximum

surface deformation at r = 0 can be written as:

uz
max = 2(1− ν)∆H(1− η√

1 + η2
) (A.6)

The best-fit compaction in the cylindrical reservoirs were determined by minimiz-
ing the objective function (Du and Olson, 2001):

arg min
∆H

= ‖GR∆H− dr‖2 + β2 ‖HL∆H− d0‖2 (A.7)

where GR is the discrete Green’s function that maps the compaction of cylindri-
cal reservoirs ∆H in the subsurface to the observed vertical deformation at specific
surface locations. GR is a function of reservoir geometry parameters as shown in
Equation (A.5). dr is a vector of vertical deformation observations associated with
the reservoir compaction. In this study, dr is the difference between the InSAR-
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observed total vertical deformation and modeled vertical fault slip deformation, β2

is the penalty factor that weights the smoothness constraint, and HL is the finite
difference approximation of the Laplacian operator. The reservoir compaction is con-
strained to be negative, and d0 is set to be zero.

Based on the production well data near Pecos, we discretized two layers of reser-
voirs in the subsurface: Delaware Mountain Group (DMG) at depth 1.52 km and
Wolfcamp at depth 3.05 km (Figure A.6). The shallow groundwater level reservoirs
were not included in the reservoir model, because the water levels in the groundwater
aquifers in the Pecos area were stable over the time period of interest (Deng et al.,
2020). The producing wells in the DMG were predominantly located to the east of
Pecos, and we set 25 cylindrical reservoirs with the radius of 0.83 km. In the Wolf-
camp formation, the wells were producing over the entire region. We discretized the
layer covering the entire area with 100 cylindrical reservoirs with the radius of 0.83
km.

We utilized the pattern search optimization tool in MATLAB to minimize the
objective function (Equation (A.7)). As the penalty factor β2 decreases, the NSSR
decreases, R2 increases, and the modeled surface deformation better matches the
InSAR data (Figure A.7). Once the penalty factor (β2) is smaller than 0.01, the NSSR
and R2 no longer change substantially. The best-fit reservoir compaction results (β2

equals 0.01) for the two producing layers are shown in Figure A.6. While DMG
reservoirs show some compaction (0 - 8 cm), the dominant compaction is in the
Wolfcamp layer (0 - 27 cm). The production volume in DMG is as significant as
in Wolfcamp. However, the dominant injection volume into DMG could maintain
the reservoir pressure and minimize reservoir compaction. For certain regions in the
Wolfcamp layer, the reservoir compaction appears to be discontinuous given the low
β2 value. We note that it is reasonable to observe localized compaction for tight shale
formations, because the low formation permeability can cause heterogeneous pressure
distribution during the depletion.

If appropriate mechanical properties of the formation are available, the distribu-
tion of reservoir pressure change and depleted zone can be evaluated by the reservoir
compaction magnitudes based on Equation (A.3). For example, if we assume Young’s
modulus of 25 GPa, Poisson’s ratio of 0.25, and Biot’s coefficient of 0.67 based on
published rock properties (Shukla et al., 2013, Xu and Zoback, 2015), the localized
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Figure A.5: Geometry of reservoir model in Geertsma et al. (1973), where H is the
reservoir height, D is the reservoir depth, and R is the reservoir radius.
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Figure A.6: (a) Input for reservoir model: vertical surface deformation difference
between InSAR and fault model (vertical surface deformation not explained by the
fault model). (b) Producing well locations in near Pecos in the Delaware Mountain
Group (DMG, cyan) and Wolfcamp (orange). Reservoir compaction values in (c)
DMG reservoirs at depth 1.52km, and (d) Wolfcamp reservoirs at depth 3.05km.
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maximum pressure drop is approximately 21 MPa. This is within a reasonable range
given operational history in the area.
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