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Coastal regions are critical hubs for industries reliant on transport and storage. However, vital 
infrastructure including above-ground storage tanks (ASTs), which store hazardous materials, is 
vulnerable to flooding and often exacerbated by subsidence (negative vertical land motion; VLM). The 
U.S. Environmental Protection Agency plays a key role in mitigating risks from ASTs. Satellite remote 
sensing provides a powerful tool to assess hazards and inform decision-making. Here, we present a 
roadmap for integrating remotely-sensed observations into decision-making frameworks. Using NASA 
observational products for end-users from remote sensing analysis (OPERA) VLM products derived 
from Sentinel-1, we map VLM at ~ 30 m resolution across Greater Houston–Galveston. Our analysis 
reveals widespread, spatially varying subsidence. We determine where VLM trends were linear from 
2016 to 2023 and extrapolate them to estimate future VLM. Combining sea-level rise (SLR) scenarios 
with VLM data, we estimate that by 2050 ASTs in the region will experience at least 26.1 cm of relative 
SLR, with 10 (14.9%) exposed to more than 60 cm. Integrating a hydrodynamic model with spatially 
varying relative SLR shows that flooding hazards are amplified during a Hurricane Harvey-like event 
under future conditions. Overall, we demonstrate the importance of incorporating high-resolution VLM 
into hazard assessments to support decision-making.

Coastal areas serve as critical hubs for industries reliant on large-scale transport and storage, including shipping, 
oil and gas, and manufacturing, where access to waterways facilitates efficient trade and logistics. Consequently, 
vital infrastructure, including facilities such as above-ground storage tanks storing petrochemicals, faces 
heightened vulnerability to natural and anthropogenic hazards linked to encroaching water. These include the 
increasing frequency of high-tide flooding1, event-driven risks from the convergence of elevated water levels, 
precipitation, and storm surge (e.g2.,), and structural degradation from saltwater intrusion (e.g3.,). Though often 
unaccounted in flood vulnerability analysis (e.g4,5.,), high resolution vertical land motion (VLM)—comprised 
of the sinking (subsidence) or rising (uplift) of the ground surface—can change elevation substantially 
over small spatial scales (~ hundreds of meters) due to various factors, such as fluid extraction and tectonic 
activity6–9. VLM, especially when coupled with sea level rise (SLR) and extreme events like storm surge or heavy 
precipitation (e.g., 2008 Hurricane Ike, 2017 Hurricane Harvey), can amplify hazards through enhanced flood 
exposure10,11, potentially triggering natural-technological accidents (Natech events; e.g12.,). Accurate and up-
to-date monitoring of coastal infrastructure, integrating geospatial data on facility layers with VLM, SLR, and 
hazardous substances (particularly those that are reactive or ignitable), is essential for identifying vulnerabilities 
and guiding proactive protective measures.

The U.S. Environmental Protection Agency (U.S. EPA), whose mission is to protect human health and the 
environment, is tasked with preventing and responding to catastrophic spills, including those from facilities 
storing petrochemicals. These efforts are under the Oil Pollution Act, the Clean Water Act (CWA) and the CWA 
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Hazardous Substance Facility Response Plan. To better enable preparedness and response efforts at national, 
state, and local levels, it is critical to understand the risk to vulnerable infrastructure (e.g12,13.,). Proactively 
identifying: (1) areas experiencing VLM and flooding, (2) infrastructure at risk of failure due to these hazards, 
and (3) stored substances of concern, provides vital, high resolution, time-sensitive information for responders 
and industry. Access to the most current and accessible data—from the national response center to local first 
responders—can improve time-critical decision-making to prevent system failures and improve responses to 
spill events, thus enhancing the protection of critical infrastructure and public health.

However, the scale of this challenge is substantial. For example, Anenberg and Kalman14 identified nearly 
900 hazardous chemical facilities under U.S. EPA jurisdiction within 50 miles of the Gulf Coast; within 2.4 km 
(1.5 mi) of these chemical facilities are over 4  M people, 1700 + schools, and nearly 100 medical facilities. 
For such regulated facilities under the CWA Hazardous Substance Facility Response Plan, assessments must 
address potential impacts to public receptors, including schools, hospitals, homes, and drinking water sources. 
Integrating data on facilities subject to flood risk from extreme events and exacerbated by relative sea-level rise 
(RSLR; which includes VLM), alongside the risks posed by hazardous substances, is important for advancing 
public health protection. By addressing these interconnected risks, we may better equip facilities, communities 
and decision-makers to mitigate threats and respond to emergencies effectively.

As Houston, Texas, USA has one of the highest densities of above-ground storage tanks (ASTs) both nationally 
and globally, it serves as an ideal case study to examine the intersection of VLM, flooding and potential impacts 
from petrochemical releases. Additionally, Texas recently adopted a new regulation for ASTs (Title 30 Texas 
Administrative Code Chapter 338) aimed at improving the design, construction, operation, and maintenance 
of these tanks to protect groundwater and surface water supplies during accidents or natural disasters. With a 
population over 7.5 M, the Greater Houston region is the 5th largest metropolitan region in the United States15. 
In 2023 it generated $550B in GDP, and is home to the Port of Houston, one of the busiest ports in the world 
and a crucial hub of the global energy network16–18. A critical component of this network is the Houston Ship 
Channel, created by dredging natural waterways in the early 20th-century to transport goods throughout the 
greater Houston Region and Gulf of Mexico.

However, the Houston/Galveston region is highly vulnerable to flooding from precipitation events and storm 
surge—the Harris County Flood Control District estimates that a major flood occurs every two years19. This 
was particularly evident when Hurricane Harvey struck in 2017, causing damage exceeding $125B20,21. Such 
flooding impacts are expected to worsen due to RSLR, which is estimated to be 31 cm higher in the region by 
2050 than today under the ‘intermediate low’ SLR scenario10,22,23, increasing intensity of tropical storms24–26, 
and local subsidence27,28. To reduce the impacts of flooding, the Harris County Flood Control District currently 
maintains 4000  km of channels, two major reservoirs, and a variety of other infrastructure. In response to 
Hurricane Harvey, they are investigating the feasibility of a $30B investment into the construction of 210 km of 
large (14 m diameter) underground tunnels that could drastically alleviate flooding hazards29.

VLM could impact the effectiveness of such current and future infrastructure and thus could be an 
important aspect of designing such protections. Long recognized as a regional hazard30, VLM prompted the 
establishment of the Harris-Galveston Subsidence District in 1975, a regulatory agency tasked with monitoring 
and managing groundwater extraction to mitigate subsidence (https://hgsubsidence.org/about/). Historically, 
the HGSD has relied on in-situ measurements from land-surveys and extensometers to measure VLM. In recent 
years, these methods have been complemented with observations from the highly accurate but spatially sparse 
Global Navigation Satellite System (GNSS) network and estimates derived from the satellite remote sensing 
technique of Interferometric Synthetic Aperture Radar (InSAR). InSAR confirms a dramatic reduction in 
subsidence since the 1990s31. Additionally, it reveals spatially variable ground motion—predominantly caused 
by aquifer compaction from fluid extraction31–38—that is not well captured in sparse in-situ observations alone. 
Other studies have assessed the impact of the changing land surface in the context of flood risk, both through 
event driven storm surge39,40 and through future projected SLR27,35,39. While these studies have identified key 
physical processes driving risk and potential vulnerabilities associated with RSLR, they have yet to be applied 
to actionable scenarios that inform infrastructure vulnerability and guide efforts to mitigate impacts on human 
health and the environment. This work addresses that gap by integrating satellite-derived products and analyses 
with assessments of infrastructure and impacts to facilities crucial to public health, a first step towards a robust 
decision-making framework.

To identify common remote sensing needs across the U.S. federal agencies, such as the EPA, the Satellite Needs 
Working Group (SNWG) under U.S. Group on Earth Observations meets biannually to interview federal agency 
end-users to identify products or solutions that address these needs41. The NASA Jet Propulsion Laboratory 
Observational Products for End-Users from Remote Sensing Analysis (OPERA) project (42; ​h​t​t​p​s​:​/​/​w​w​w​.​j​p​l​.​n​a​s​
a​.​g​o​v​/​g​o​/​o​p​e​r​a​/​​​​​)​, which was formed as a SNWG solution, has been tasked with the development and production 
of operational analysis-ready surface displacement and VLM products for most of North America and all U.S. 
Territories derived from the European Copernicus Sentinel-1 satellite constellation and the upcoming NASA-
ISRO SAR (NISAR) satellite. The OPERA algorithms are fully open source ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​o​p​e​r​a​-​a​d​t​​​​​)​, its 
products are produced as new satellite data is acquired and are freely accessible through the NASA Distributed 
Active Archive Centers.

We estimate VLM at ~ 30 m resolution, using the methodology of refs 7 and 43 (see Methods), which detected 
linear rates of change with mm-scale accuracy. These estimates are comparable in accuracy to GNSS, but offer far 
broader spatial coverage, helping to resolve fine-scale spatial variability that GNSS alone may alias. Our VLM is 
derived from the standardized, ready-to-use OPERA displacement prototype, based on state-of-art time-series, 
rigorously validated InSAR algorithms (43,44). These products are being routinely produced and will be used for 
OPERA-VLM, the first operational VLM product over North America, providing a consistent and accessible 
baseline for a wide range of end users.
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Here, we illustrate how VLM data in Greater Houston can enhance the monitoring and management of 
critical infrastructure in the context of natural and anthropogenic hazards combined with ongoing RSLR. We 
focus on designing a roadmap of how to use VLM information in planning, while accounting for uncertainties, 
to better understand future flood vulnerability of critical infrastructure. To the best of our knowledge, there is 
not a widely established roadmap leading from routinely estimated displacement to risk assessment of critical 
infrastructure. First, we present the overall picture of VLM as estimated using the OPERA-VLM prototype, 
placing it in context of prior work and demonstrating its use at critical infrastructure locations. Next, we discuss 
how temporal uncertainties should be used in conjunction with VLM rates to better estimate future land surface 
elevation. We then use a state-of-the-art flood model45 to illustrate how VLM could affect the future flooding 
hazard at ASTs during a Hurricane Harvey-like event. Finally, we discuss ongoing work aimed at integrating VLM 
and RSLR vulnerability with example scenarios of the ignitability and reactivity of hazardous substances that 
could potentially lead to Natech events. In short, we detail how OPERA-VLM can both refine our understanding 
of ongoing ground motion and support proactive management strategies for critical infrastructure in the face 
of accelerating RSLR.

Results
Linking VLM to current infrastructure vulnerability
Our OPERA VLM prototype rate map, referenced to the global navigation satellite system (GNSS) in the 2014 
International Terrestrial Reference Frame46, spans April 2016 to November 2023 (~ 7.5 years) and reveals broad 
subsidence throughout the greater Houston/Galveston region (Fig.  1). We find that the city of Houston is 
subsiding at a median rate of − 5.3 ± 1.1 mm/year (+ /− 1 standard deviation), while Galveston is experiencing 
a slightly slower rate of − 3.1 ± 1.1 mm/yr. Across our study area, we find that 95% (~ 2-sigma range) of values 
fall between −  19.2  mm/yr and −  0.8  mm/yr. Overall, our VLM rates are well correlated with collocated, 
independent GNSS stations (RMSE of 1.2 mm/yr; Fig. S1); these stations estimate a median of − 4.3 ± 0.9 mm/
yr, a rate of − 5.1  ±  0.9  mm/yr in Houston, and -2.9  ±  0.8  mm/yr in Galveston. VLM rate uncertainties are 
estimated via least squares with propagation of error of GNSS uncertainty resulting in the 99.7% range (~ 3 

Fig. 1.  Vertical land motion rate map for the Sentinel-1 period spanning April 2016 to November 2023 in 
the ITRF14 reference frame. Markers show GNSS rates used in calibration (square) and validation (circular; 
accuracy assessment in Fig. S1). The corresponding VLM uncertainty map is shown in the inset map. Yellow 
triangles and surrounding rectangles indicate time series locations shown in Figs. 4, 5. The red/white dashed 
line marks the Houston Ship Channel, and white dotted outlines mark county borders.
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standard deviations) of 0.9 to 1.4 mm/yr (Fig. 1 inset). 96.6% of pixel locations are significant at 1-sigma. These 
uncertainties are crucial for correct interpretation of the OPERA VLM and should be used in conjunction with 
the VLM to provide a realistic range of the contemporary rate.

Across our study area there is considerable spatial variability, with subsidence rates generally increasing from 
effectively 0 mm/yr in La Porte in southeast Harris County (Fig. S2; − 0.8 ± 1.1 mm/yr), to < − 20 mm/yr in 
northwest Harris County. Subsidence in northwest Harris County has historically been attributed to groundwater 
extraction for industrial and municipal use47. The decline in ground water levels continues to be a concern given 
water demands48, especially with the extended drought and population increase. Most of the water is extracted 
from the Chicot and Evangeline aquifers which dips and thicken from the northwest to the southeast49,50, as 
reflected in both changes in groundwater level and the observed radial pattern of subsidence observed here and 
previously (e.g31,51.,). We note additional hotspots of subsidence near Mont Belvieu, Channelview, and across 
the border of Fort Bend and Brazoria County. At Mont Belvieu, subsidence has been attributed to hydrocarbon 
extraction at the Barber’s Hill Oil Field31. The subsidence at Channelview, which traverses the Houston Ship 
Channel, does not display a clear relationship with nearby groundwater extraction38 but is located adjacent to 
a salt dome31 which could cause localized VLM. Salt domes, formed as buried salt layers rise through overlying 
rock due to pressure and buoyancy, are often associated with hydrocarbon production and underground storage, 
creating complex patterns of VLM30. Additionally, hydrocarbon extraction along aseismic faults that exhibit 
slow horizontal creep (< 2 cm/yr) have been implicated in localized VLM34. Such activity likely contributes to 
the band of subsidence near Fresno (Fort Bend County, 5 km south of where it borders the intersection of Harris 
and Brazoria County), part of which coincides with the Arcola Fault38,52.

Such localized VLM data can be used to more effectively identify coastal infrastructure vulnerable to the 
impacts of RSLR, thus facilitating better-informed resource allocation and more targeted adaptation planning. 
As indicated earlier, the Houston Ship Channel is one of the world’s largest petrochemical complexes with ASTs 
storing petroleum products and hazardous substances (Fig. 1, red/white line). ASTs are the most vulnerable 
component of industrial facilities in storm events and result in the largest oil and chemical spills during extreme 
weather events, which have been increasing in intensity53. Some ASTs have not been adequately designed to 
withstand increasing extreme weather events over long periods of time (e.g54.,). Flood inundation depth is a 
critical parameter controlling AST vulnerability (e.g55.,), as it determines the likelihood of petrochemical 
reactivity and ignitability when floodwaters encounter stored substances, potentially triggering Natech events56. 
We address inundation by estimating the risk of current and future flooding for 73 critical storage facilities in 
our study area by analyzing their proximity to coastal waters or the Ship Channel (Fig. 2). Our analysis reveals 
that 53 facilities (72.6%) are located both within 25 km of these water bodies—a distance potentially affected 
by storm surge (e.g57.,)—and at elevations below 10 m, placing them at enhanced risk of flooding. Of these, six 
are located on ground less than 3 m elevation and within 1 km from water, and could be considered most at risk 
from flooding. Such vulnerability will be exacerbated by VLM: half of the 53 exposed stations are sinking faster 
than − 2.2 ± 1.0 mm/yr and 2 of the 6 most at risk are subsiding at or faster than − 6.0 ± 0.1 mm/yr. While not a 
rigorous vulnerability analysis, this basic methodology is broadly applicable to a range of infrastructure and can 
be used to quickly identify at-risk infrastructure and help prioritize management strategies.

Considerations for quantifying future VLM
Until about 2050, future U.S. SLR scenarios remain fairly consistent across emissions pathways58,59, creating an 
opportunity to design and implement protective actions now that yield long-term economic and environmental 
benefits (e.g60–62.,). However estimates of future VLM from these scenarios are conducted at tide gauge 
locations63, thus lacking the spatial resolution and coverage needed for critical infrastructure monitoring. Others 
have assumed that VLM behaves linearly and extrapolated observed rates into the future27. However, VLM can 

Fig. 2.  Above-ground storage tank (AST) vulnerability. (left) Map showing the 73 ASTs facilities considered 
in this study overlaid on Fig. 1. (right) Scatter plot showing facilities as a function of elevation and distance to 
water as a proxy for vulnerability to flooding. The cluster (within gray outline) of infrastructure at low elevation 
nearby water, are most vulnerable today. Those with higher subsidence (darker blue), especially in this cluster, 
are more likely to become vulnerable in the future. Note the size of color bin reflects the typical uncertainty 
of ~ 1 mm/yr.
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behave nonlinearly6,28,64, making it unsuitable for linear extrapolation. Thus, both high spatial resolution and 
robust understanding of linearity are needed to inform management decisions by the EPA, as well as state and 
local governments, not only for petrochemical infrastructure but also for other essential sectors.

Here, we examine the assumption of linearity in our time series by estimating temporal variability, a metric 
of nonlinearity, which compares the agreement between a linear trend computed over the full record length 
with trends computed over shorter records (> 3 years; 28). Over greater Houston/Galveston, we find a median 
temporal variability of 1.9 mm/yr, with 95% of values between 0.3 and 5.1 mm/yr (Fig. 3a). Following ref28. 
we use this temporal variability to create a binary mask that marks pixels above (below) the 2-sigma range of 
4.4 mm/yr as nonlinear (linear; Fig. 3b). Therefore 95.8% of locations behave linearly within the observation 
period (April 2016 to November 2023), including 71 of 73 ASTs.

Nonlinear VLM is predominantly observed in northwest and west Houston, driven primarily by 
anthropogenic groundwater extraction, which fluctuates in response to societal demands and policy changes. 
Importantly, our assumption of linearity is limited to the analysis time frame and so may not accurately reflect 
conditions prior to, or beyond, this period. This masking approach serves as a useful screening tool to quickly 
identify areas where linear extrapolation of VLM may inform RSLR resilience strategies. While straightforward 
and readily implementable, it should be complemented by further investigation into the underlying physical 
processes causing deformation whenever possible.

To further demonstrate temporal linearity, we highlight two coastal locations near critical infrastructure that 
exhibit low and high temporal variability (Fig. 4). First we highlight a section of Buffalo Bayou, just south of 
the Ship Channel in northern Pasadena, where numerous oil refineries occupy lands built on former wetlands. 
Here, we observe rapid subsidence of −  6.7  ±  1.0  mm/yr that is clearly linear during our period of analysis 
(2016–2023), and confirmed by a low temporal variability estimate of 0.4 mm/yr (Fig. 4a). Texas City, abutting 
western Galveston Bay, displays a relatively high temporal variability of 4.0 mm/yr but is also linear: a linear 
model (− 2.6 ± 1.0 mm/yr) explains most of the variance of the timeseries (r2 = 0.94; Fig. 4b) supporting the 
2-sigma range (4.4 mm/yr) threshold adopted for classifying linearity. Conversely, Fig. 4c shows a nonlinear 
(temporal variability of 5.9 mm/yr) time series at Magnolia Garden, which displays a relative acceleration of 
subsidence starting in 2022.

The two locations highlighted in Fig. 4further emphasize the variability in subsidence across Houston, which 
as previously noted ranges from − 19.3 mm/yr to − 0.8 mm/y (~ 2-sigma range). Accurately capturing this range 
is critical for estimating future RSLR and assessing associated vulnerability. Currently, the U.S. SLR scenarios 
apply a single VLM estimate of -5.1 ± 0.01 mm/yr, which underestimates uncertainty and does not reflect the 
full spatial variability of subsidence. To better account for this variability, we use our InSAR-derived OPERA 
VLM rates—which are predominantly linear according to our temporal variability metric—to improve RSLR 
projections. Building on ref28., we replace the VLM component in the U.S. SLR scenario framework with our 
OPERA VLM rates and employ a probabilistic approach to estimate confidence intervals for RSLR projections 
through 2050 (see Methods). In the northern Pasadena location, RSL is projected to be an additional 7.2 cm 
higher due to VLM not captured by the U.S. SLR scenario estimates, a 14.3% increase (Fig. 5a). Conversely in 
Texas City, the projected RSL is 22.6% lower than the intermediate-low SLR scenario. Overall, 58.2% of the land 
area is subsiding at rates exceeding the SLR scenario (− 5.1 ± 0.1 mm/yr). Within 25 km of the Ship Channel and/
or the coast, 26.9% of the land is subsiding at rates faster than − 5.1 mm/yr, and ten ASTs (14.9%) are sinking at 
rates exceeding − 5.1 mm/yr (Fig. 5b), emphasizing that areas relatively safe today could be at risk in the future. 
Conversely, some currently at-risk areas may face less severe hazards than previously anticipated, underscoring 
the need for strategic allocation of resources.

Fig. 3.  Vertical rate Temporal Uncertainty, a proxy for nonlinearity. (Left) temporal variability estimated by 
comparing the linear rate over the full record with that computed over smaller subsets. (Right) mask showing 
linear/nonlinear based on the 2-sigma range (4.4 mm/yr) of the temporal variability.
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Assessing flood risk at critical infrastructure
Finally, we explore how the inclusion of RSLR may alter the range and severity of extreme flood hazards. 
Specifically, we use an existing state-of-the-art flood model to simulate a Hurricane Harvey-like event45. We 
avoid the common use of simplified ‘bathtub models’27,65 to simulate inundation, given that Sanders et al.66, 
recently highlighted their inaccuracies. Incorporating RSLR with spatially varying OPERA VLM, we find that six 
(9.2%) of the ASTs experience a significant increase in flooding (|Δ|> 10 cm; see Methods), and none experience 
significantly less flooding. We find that two locations adjacent to the Houston Ship Channel experience flooding 
greater than 80 cm, suggesting that these are the most at risk in 2050 from a Hurricane Harvey-like extreme event. 
Importantly, the remaining 34 ASTs showed no change in flooding. Overall, 12% of our study area coincident 
with the model domain experienced a significant change in flood depth (Fig. S3). Flood depth increased at 85% 

Fig. 4.  Vertical displacement time series at (a) Buffalo Bayou and (b) Texas City, Galveston and (c) North 
Houston (near Magnolia Gardens). Blue shading represents the time-series uncertainty, while the magenta 
dashed line shows the uncertainty due to temporal variability. Buffalo Bayou has a low temporal variability 
of 0.3 mm/yr, while Texas City is relatively high (4.0 mm/yr) but remains linear. North Houston displaying 
nonlinearity—especially after about 2021—that is correctly captured by the nonlinearity indicator (temporal 
variability of 5.9 mm/yr). Note different y axis on (c).
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of locations, most notably along the Houston Ship Channel and the reservoirs in western Harris County. While 
here we focused on the tail end of hazardous events, it is important to note that RSLR can also alter flooding 
associated with daily tides and smaller, more frequent storms, potentially changing the risk of additional ASTs. 
For example, more frequent, albeit smaller inundation could lead to degradation of facilities while changes in 
the VLM could alter runoff flow paths, leading to precipitation induced flooding inland from water bodies. Such 
possibilities underscore the need for incorporation of high resolution VLM into physics-based flood inundation 
modeling.

Discussion
The roadmap presented here is a first step towards incorporation of RSLR into robust decision-making 
frameworks. With the OPERA VLM prototype, we show that Houston is subsiding rapidly, but at different rates 
throughout the city, potentially worsening exposure to flooding at locations of importance to national security 
(Figs. 1, 2). Next, we illustrate a technique for diagnosing linearity, finding that subsidence is primarily linear 
from April 2016 through November 2023 (Figs. 3, 4), which allows future extrapolation of the rate (Fig. 5a). 
Using the ASTs as an example of critical infrastructure susceptible to flooding, we showcase a method to 
combine VLM with future SLR scenarios, finding that ASTs will be exposed to RSLR of least 26.1 cm in 2050, 
while 10 (14.9%) may experience RSLR of 50 cm or more (Fig. 5b). Finally, we show that, if possible, a state-of-
the-art hydrodynamic model should be used with spatially varying RSLR to fully understand the flood hazard; 
incorporation of RSLR caused substantially more flooding at specific ASTs when a Hurricane Harvey-like event 
occurred under a future RSLR scenario (Fig. 6).

However, we caution that our roadmap is a prototype, a first step that does not capture the full range of 
hazards that infrastructure, like ASTs, could be exposed to, such as saltwater intrusion (e.g67.,), more frequent 
shallow inundation (e.g1.,), changing tidal ranges (e.g68.,), groundwater inundation (e.g69.,), and more. While 
our uncertainty estimates account for noise in InSAR processing, inaccuracies in digital elevation models, and 
assumptions in flood modeling (see Methods), there are nevertheless uncertainties in future land and water 
use changes, infrastructure development, and evolving coastal dynamics that will require ongoing monitoring 
and analysis as new information becomes available. The OPERA VLM product, especially when created with 
data from the upcoming NISAR mission, will be uniquely situated to meet this challenge in North America—
combining state-of-the-art open source InSAR processing algorithms processing with cloud capabilities. Such 
developments enable low-latency data updates that have hitherto been impossible due to the complexity and 
computational intensity of InSAR processing (Meyer et al., 2025). Ongoing monitoring is increasingly important 
as the probability of extreme events, including with Harvey-like rainfall, increases in the future70. Indeed, Texas 
is the leading state in both the frequency and costs of billion-dollar weather and climate disasters (NOAA 
National Centers for Environmental Information, U.S. Billion-Dollar Weather and Climate Disasters (2024).

Particularly damaging is the effect of extreme events on petrochemical facilities, especially given that 89 
million people in the U.S. live or work within ~ 3.2 km of a high-risk chemical facility (cisa.gov/cfats). For example, 
flood damage to ASTs during Hurricane Harvey caused the release of at least 4.6 million pounds of chemical 
pollutants and damage to at least 14 toxic waste sites71 and water reactions with petrochemicals are a leading 
cause of Natech events13,56. Indeed, the U.S. Chemical Safety Board specifically recommended incorporating 
flood maps as process safety information and addressing extreme weather vulnerabilities and critical safeguards 
(​h​t​t​p​s​:​​/​/​w​w​w​.​​c​s​b​.​g​o​​v​/​a​s​s​e​​t​s​/​1​/​​6​/​b​i​o​l​​a​b​_​i​n​v​​e​s​t​i​g​a​​t​i​o​n​_​r​e​p​o​r​t​_​2​0​2​3​-​4​-​2​4​.​p​d​f). The EPA is currently developing 
a tool that integrates the locations and chemical contents of petrochemical facilities—including water-reactive 
substances—with public health and environmental data, such as drinking water supplies, public facilities (e.g., 

Fig. 5.  RSLR extrapolations (left) Example time series Galveston Pier 21 shows the RSLR estimate from the 
U.S. Intermediate-Low SLR scenario, containing a VLM estimate of − 5.1 ± 0.1 mm/yr59. Buffalo Bayou and 
Texas City use OPERA-VLM rates of − 6.7 ± 1.0 mm/yr and − 2.6 ± 1.0 mm/yr, respectively. (Right) RSL at 67 
above-ground storage tanks (within 25 km of water) in 2050 using OPERA-VLM, emphasizing the impact of 
spatial variability of VLM.
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homes, schools, hospitals), and fish and wildlife habitats (Fig. S4). As high-resolution OPERA VLM data, 
combined with SLR, is incorporated into the tool on a national scale, it will enhance the ability to make strategic 
decisions for disaster prevention and response. The prototype roadmap presented here illustrates how end users 
can leverage ready-to-analyze satellite information from the OPERA project alongside future scenarios to better 
understand and mitigate coastal hazards. As OPERA VLM products become available over North America, this 
framework can serve as a model for mitigating risks in other vulnerable areas of the continent.

Methods
OPERA vertical land motion
We obtained 206 Sentinel-1 Single Look Complex (SLC) images along ascending track 34 spanning April 12, 
2016, to November 26, 2023, from the Alaska Satellite Facility. The methods used for estimating VLM are 
nearly identical to those in7, with key points reproduced here for completion. We prepared the SLC images 
for time series analysis by coregistering them to a single geometry using the ISCE-2 sentinelStack workflow72. 
Topographic effects are accounted for using the Copernicus GLO30 DEM. We use the InSAR time series 
processing software FRInGE73,74, a prototype of the OPERA production algorithm Dolphin43, to generate full-
resolution (approximately 2.3 m in range, 15.6 m in azimuth) wrapped interferograms. FRInGE uses both a 
SqueeSAR-like75 strategy for identifying distributed pixels while using the traditional amplitude dispersion 
method to identify persistent scatters76,77. We identify neighborhoods of statistically self-similar distributed 
scatters using a window size of 33 pixels in range and 15 lines in azimuth, and an amplitude dispersion threshold 
of 0.4 for determining PS pixels. FRInGE uses every possible interferometric pair from the given SAR network 
to extract the maximum amount of phase information. To improve efficiency, the full time series is split into 
mini-stacks of 15 SAR images each, for which the covariance matrix is estimated for each neighborhood of 
pixels78. The covariance matrix is then decomposed into eigenvectors and corresponding eigenvalues. The phase 
of the largest eigenvector is used to generate the wrapped phase time series with reduced temporal decorrelation 
effects.

We multilook the resulting 206 wrapped interferograms by a factor of 5 × 2 in range and azimuth, respectively, 
resulting in ~ 25 m pixel size. We assume there are no large displacements across water bodies, so we mask and 
interpolate using inverse distance weighting across them to minimize phase jumps during unwrapping with 
Snaphu79. The single reference unwrapped time-series phase is converted to displacement by scaling with a 
factor of -λ/4π, where λ = 5.6 cm, the Sentinel-1 wavelength. We estimate line-of-sight (LoS) velocities by fitting 
a linear trend plus sinusoid with an annual and component to the displacement time series. The LoS velocity 
uncertainty is the standard deviation of the regression slope80. Temporal variability is estimated by comparing 
the best fit trends to data from different moving windows with the trend estimate from the full data record. We 
use the median absolute deviation of the disagreement between the moving window trend (from 3 to 5 years in 
length) and full-record trend to quantify temporal variability; see28 for full details. We geocode our results to a 
posting of approximately 30 m × 30 m.

We apply geophysical and geometrical corrections using MintPy80,81. We first correct for atmospheric effects 
using ERA5 reanalysis with PyAPS82, solid earth tides with PySolid83 and topographic residuals84. We then 
remove long-wavelength horizontal motion due to plate tectonics using the model for the North American 
plate85. We remove outliers in the time-series by dropping SAR acquisitions outside of the 95% confidence 
interval, as determined relative to the Median Absolute Deviation of residual tropospheric delay81. We reduce 
residual noise using empirical orthogonal function analysis (e.g86.,) by decomposing the time series into 

Fig. 6.  Impact of RSLR on future flooding from Hurricane Harvey-like event. Higher values indicate a greater 
depth of simulated flooding in 2050 (due to RSLR) relative to Hurricane Harvey alone. Triangles mark the 6 
AST facilities in our study area that experienced significant changes, and the red/white dashed line again marks 
the Houston Shipping Channel.
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orthogonal eigenvectors and reconstructing it using only the leading 5 vectors which contain 88.3% of the 
variance. Note that we remove an annual cycle from the time series by fitting a sinusoid prior to decomposition.

The total effect of applied corrections is small: averaged over the study area, velocities are 0.6 mm/yr lower 
than before the correction, and 95% of residual velocities are between − 1.2 mm/yr and 0.8 mm/yr, on par with 
average uncertainty of 1.1 mm/yr. Uncertainty is reduced on average by 0.2 mm/yr with a maximum reduction 
(pixel-wise) of 0.6 mm/yr. This is expected given the small size and flat terrain of the study area relative to the 
long wavelength spatially correlated tropospheric noise87 and coarse resolution of the ERA5 weather model88.

We only consider coherent pixels (temporal coherence greater than 0.8) and those on land according to the 
water mask available from Open Street Maps89.

We leverage the Global Navigation Satellite System (GNSS) network to tie our relative InSAR LoS velocity 
into the ITR14 terrestrial reference frame46. There are 55 GNSS stations in our study area available from the 
Nevada Geodetic Lab90with velocity and uncertainty estimates that are consistent in space and time with our 
InSAR rates (2016–2023). Due to limited constraints in decomposing satellite LoS with only one viewing SAR 
geometry (descending track 41 does not cover coastal Houston/Galveston), we projected our corrected LoS 
displacements to the vertical by assuming horizontal motion to be negligible. We take this assumption to be 
justified in this case as we removed known contributors to large-scale horizontal land motion, namely solid earth 
tides and rigid plate motion, and the gradient of horizontal motion due GIA is negligible (< 0.03 mm/yr91;). We 
obtained vertical rates using the equation:

	
VUp = VLOS

cos (θ) � (1)

where θ is the local incidence angle. We tie our map to the GNSS station at NASA by adding GNSS velocity 
(2015–2023) to InSAR rates (2016–2023) and propagating the uncertainty to obtain our final velocity and 
uncertainty estimates92.

We empirically minimize local spatially correlated noise in the time series (Fig.  4a,b) by first computing 
the Pearson correlation coefficient (⍴) between the detrended pixel timeseries of interest and all pixels within 
a 2.5 km radius. We then compute the spatial average of pixels with ⍴ > = 0.95 and remove it from the original 
time series of interest and recompute the trend and uncertainty using bootstrapping. Resulting trends are not 
sensitive to either the length of the radius or the correlation threshold. To further minimize local scattering, 
geolocation, and atmospheric errors, we average within a 2-pixel radius. Similarly, we estimate VLM at above-
ground storage tank facilities using an average of VLM within 1 pixel distance of the facilities; results are 
insensitive to alternative pixel distances.

We utilize SLR scenarios from the U.S. Interagency Technical Report on Sea Level Rise10 which are derived 
from the IPCC 6th Assessment Report23. We focus on VLM contributions to scenarios in the near-term, by 
2050, at a point where scenarios do not differ significantly10. Specifically, we use the intermediate-low scenario, 
a medium pathway of future emissions which agrees well with extrapolated observations. As in28, we replace 
the VLM component used in the underlying framework63 with our OPERA VLM estimates. We calculate the 
confidence interval for contemporary estimates using the z-score in a normal distribution to convert mean VLM 
rates and their uncertainties (standard deviations) to the 17th and 83rd percentiles as reported in the IPCC.

Flood modeling
For estimating elevation of ASTs, we used a DEM derived from “Upper Coast LiDAR” data acquired in 2018 as 
Texas Strategic Mapping Program (StratMap), titled “Upper Coast Lidar”. This dataset has a horizontal accuracy 
of ± 20 cm and vertical RMSE ≤ 10 cm93. This DEM was also integrated into the flood simulation of Hurricane 
Harvey-like storm executed using the Parallel Raster Inundation Model (PRIMo), a sophisticated mechanistic 
flood inundation forecasting framework45. To integrate future RSLR, we modify the digital elevation model 
(DEM) values by extrapolating VLM rates to 2050 and adding them to the DEM. We do not consider the linearity/
nonlinearity of the VLM time series and interpolate to fill gaps due to loss of temporal coherence. We therefore 
focus our analysis on the significant above-ground storage tank facility locations, where VLM behaves linearly, 
and temporal coherence is above our masking threshold of 0.8. We increase the ocean boundary condition by 
0.27 m, the ocean contribution to SLR in 2050 under the Intermediate-low SLR scenario. We consider a flood 
difference of greater than 10 cm absolute significant based on the vertical accuracy of ~ 10 cm. The full model 
details can be found in45.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. InSAR processing software is freely available on GitHub and archived on Zenodo. ISCE-2 is at ​h​t​t​p​s​
:​/​/​g​i​t​h​u​b​.​c​o​m​/​i​s​c​e​-​f​r​a​m​e​w​o​r​k​/​i​s​c​e​2​​​​ and https://zenodo.org/record/8157051, FRInGE is at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​i​
s​c​e​-​f​r​a​m​e​w​o​r​k​/​f​r​i​n​g​e​/​t​r​e​e​/​m​a​i​n​​​​​, and https://zenodo.org/record/8157065, and MintPy is at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​
/​i​n​s​a​r​l​a​b​/​M​i​n​t​P​y​​​​ and https://zenodo.org/record/7502839, GNSS data and MIDAS rates and uncertainties are 
available from the Nevada Geodetic Lab at http://geodesy.unr.edu. Sentinel-1 single look complex images (SLC) 
are available at the Alaska Satellite Facility Distributed Active Archive Center (https://asf.alaska.edu/). The rate 
and associated uncertainty map produced in this work are available in the supplementary files in both geotiff 
and kmz (Google Earth) format. The historical flood depth model prediction is available at ​h​t​t​p​s​:​​/​/​d​a​t​a​​d​r​y​a​d​.​​o​r​
g​/​s​​t​a​s​h​/​d​a​t​a​s​e​t​/​d​o​i​:​​​​​​​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​7​2​8​0​/​D​1​N​X​1​W​​​​ (H10.tif), and the future flood depth model prediction is 
available in the supplementary files in geotiff format.
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